Organometallics
Article
i
i
2
.0 g of pinacolone (20 mmol) and 2.9 g of ethyl formate (2.0 equiv)
125.74, 124.26, (Ar), 91.85 (C), 28.79 ( Pr CH), 24.17 ( Pr CH ).
3
at 0 °C. Immediately a large amount of white solid appeared in the
reaction bottle, and the mixture was stirred for 30 min at 0 °C. Then
the resulting suspension was warmed to room temperature and stirred
for about 10 h. The white solid was separated by filtration and dried
under reduced pressure. Formic acid in ethanol was added to the solid
until the pH <7, affording the corresponding β-diketone, which was
used directly in the preparation of ligand 2a. Subsequently, 3.5 g of
Anal. Calcd for C H F NO: C, 70.38; H, 6.44; N, 3.73. Found: C,
22
24 3
70.45; H, 6.38; N, 3.78.
i
1
(2,6-Pr
C
H
)NCHCHC(p-O
NPh)OH (2h). Yield: 21%. H NMR
2
): δ 11.82 (d, J = 12.6 Hz, 1H, N−H), 8.31 (d, J =
2
6
3
(300 MHz, CDCl
3
8.7 Hz, 2H, Ar H), 8.11 (d, J = 8.7 Hz, 2H, Ar H), 7.34−7.21 (m, 3H,
Ar H), 7.04 (dd, J = 12.6, 7.2 Hz, 1H, NCH), 5.96 (d, J = 7.2 Hz,
3
i
3
1H, CCH), 3.21 (sept, J = 6.9 Hz, 2H, Pr CH), 1.24 (d, J = 6.9
i
13
2,6-diisopropylaniline (1.0 equiv) was added to the obtained β-
Hz, 12H, Pr CH
3
). C NMR (300 MHz, CDCl
3
): δ 187.90 (NC),
(Ar), 91.69 (C), 28.44 ( Pr CH), 23.79 ( Pr CH ). Anal. Calcd for
diketone in ethanol and the condensation reaction was carried out for
about 24 h, yielding 3.3 g of ligand 2a (58%). Ligands 2b−h were
prepared according to the same method as for 2a.
155.46, 149.26, 144.78, 144.53, 135.69, 128.21, 128.11, 123.93, 126.63
i
i
3
C H N O : C, 71.57; H, 6.86; N, 7.95. Found: C, 71.51; H, 6.81;
21 24 2 3
(
2,6- Pr C H )NCHCHC( Bu)OH (2a). 1H NMR (300 MHz,
i
t
N, 7.90.
Synthesis of Complexes 3a−g. To (pyridine) NiMe (0.27 g,
2 2
2
6 3
3
CDCl ): δ 11.10 (d, J = 12.0 Hz, 1H, N−H), 7.25−7.14 (m,
3
HH
3
3
H, Ar H), 6.69 (dd, J = 12.6, 7.8 Hz, 1H, NC−H), 5.38 (d,
1.1 mmol) and the ligand 2a (0.29 g, 1.0 mmol) in a 100 mL septum-
capped Schlenk bottle was added toluene (15 mL) at 25 °C.
Immediate methane evolution was observed, which ceased within 5−
HH
3
3
i
JHH = 7.8 Hz, 1H, CCH), 3.19 (sept, J = 6.9 Hz, 2H, Pr CH),
HH
t
3
i
13
1
.22 (s, 9H, Bu H), 1.20 (d, J = 6.9 Hz, 12H, Pr CH ). C NMR
HH 3
1
0 min. The resulting red solution was stirred for an additional 4 h at
(
1
300 MHz, CDCl ): δ 207.49 (NC), 153.22, 144.93, 136.88, 127.66,
3
i
t
i
25 °C, during which time excess (pyridine) NiMe decomposed to
24.11, (Ar), 90.91 (C), 28.61 ( Pr CH), 28.08 ( Bu), 24.21 ( Pr
2 2
nickel black. The resulting mixture was filtrated to remove nickel black,
the residue was extracted with toluene, and all volatiles were removed
under reduced pressure to yield pure samples of pyridine complex 3a
as a red powder in high yield (89%). The other neutral nickel(II)
complexes 3b−g were prepared by the same procedure with similar
yields.
CH ). Anal. Calcd for C H NO: C, 79.39; H, 10.17; N, 4.87. Found:
C, 73.32; H, 10.12; N, 4.93.
3
19 29
i
(
2,6- Pr C H )NCHCHC(Ph)OH (2b). The synthesis of the ligand
2
6 3
20d
has been reported in our previous work.
2,6- Pr C H )NCHCHC(1-naphthyl)OH (2c). Yield: 65%. 1H
i
(
2
6 3
NMR (300 MHz, CDCl ): δ 11.73 (d, J = 12.0 Hz, 1H, N−H),
3
i
t
1
3
[(2,6-Pr C H )NCHCHC( Bu)O]Ni(Py)(CH ) (3a). H NMR (300
2
6
3
3
8
7
7
.58 (d, J = 8.1 Hz, 1H, Ar H), 7.93−7.77 (m, 3H, Ar H), 7.60−
HH
3
3
MHz, C D ): δ 8.68 (d, J = 5.1 Hz, 2H, o-H Py), 7.09−6.89 (m,
6 6 HH
.47 (m, 3H, Ar H), 7.32−7.20 (m, 3H, Ar H), 6.94 (dd, J = 12.6,
HH
3
3
3
3H, Ar H), 6.61 (t, J = 7.8 Hz, 1H, p-H Py), 6.22 (t, J = 6.9 Hz,
HH HH
.5 Hz, 1H, NCH), 5.75 (d, J = 7.5 Hz, 1H, CCH), 3.33
HH
3
3
3
i
3
i
m-H Py), 5.31 (d, JHH = 6.3 Hz, 1H, CCH), 4.36 (sept, JHH = 6.9
Hz, 2H, Pr CH), 1.53, 1.23, (d, JHH = 6.9 Hz, 12H, Pr CH
3
(
sept, J = 6.9 Hz, 2H, Pr CH), 1.28 (d, J = 6.9 Hz, 12H, Pr
HH
HH
i
3
i
1
3
), 1.11 (s,
H, Bu H), −0.60 (s, 3H, NiCH ). C NMR (600 MHz, C D ): δ
CH3). C NMR (300 MHz, CDCl ): δ 195.42 (NC), 154.17,
3
t
13
9
3
6
6
1
1
44.95, 139.68, 136.63, 134.31, 130.82, 128.70, 127.15, 126.51, 126.42,
i
i
187.97 (NC), 151.69, 142.28, 135.28, 125.48, 123.14, 122.66, (Ar, Py),
26.38, 125.20, 124.28, (Ar), 96.71 (C), 28.85 ( Pr CH), 24.27 ( Pr
t
t
i
8
2
9.73 (C), 38.88 ( Bu C), 28.41 ( Bu CH ), 28.03 ( Pr CH), 24.91,
3
CH ). Anal. Calcd for C H NO: C, 83.99; H, 7.61; N, 3.92. Found:
C, 83.87; H, 7.66; N, 3.97.
3
25 27
i
3.11, ( Pr CH ), −7.14 (NiCH ). Anal. Calcd for C H NNiO: C,
3
3
25 36
i
1
68.36; H, 8.26; N, 6.38. Found: C, 68.30; H, 8.21; N, 6.39.
(
2,6- Pr C H )NCHCHC(9-anthryl)OH (2d). Yield: 62%. H NMR
2
6
3
i
[
(2,6-Pr C H )NCHCHC(Ph)O]Ni(Py)(CH ) (3b). The synthesis of
2
6
3
3
(
300 MHz, CDCl ): δ 11.94 (d, J = 12.3 Hz, 1H, N−H), 8.47 (s, 1H,
20d
3
the complex has been reported in our previous work.
Ar H), 8.23−8.01 (m, 4H, Ar H), 7.53−7.24 (m, 7H, Ar H), 6.97 (dd,
i
3
3
[(2,6- Pr
2
C
H
6
3
)NCHCHC(1-naphthyl)O]Ni(Py)(CH
3
) (3c). Yield:
J
= 12.6, 7.2 Hz, 1H, NCH), 5.67 (d, J = 7.2 Hz, 1H, C
1
3
HH
HH
9
1%. H NMR (300 MHz, C D ): δ 8.68 (d, J = 5.1 Hz, 2H, o-
3
i
3
6
6
HH
CH), 3.43 (sept, J = 6.6 Hz, 2H, Pr CH), 1.35 (d, J = 6.9 Hz,
3
HH
HH
H Py), 7.09−6.89 (m, 3H, Ar H), 6.61 (t, J = 7.8 Hz, 1H, p-H Py),
i
13
HH
1
1
1
2
3
2H, Pr CH ). C NMR (300 MHz, CDCl ): δ 196.94 (NC),
3
3
3
3
6
4
1
.22 (t, J = 6.9 Hz, m-H Py), 5.31 (d, J = 6.3 Hz, 1H, CCH),
.36 (sept, J = 6.9 Hz, 2H, Pr CH), 1.53, 1.23, (d, J = 6.9 Hz,
HH HH
HH
HH
53.82, 144.84, 137.84, 136.53, 131.67, 128.88, 128.23, 128.10, 127.90,
3
i
3
i
26.39, 126.20, 125.69, 124.35, (Ar), 99.72 (C), 28.98 ( Pr CH),
i
t
13
2H, Pr CH ), 1.11 (s, 9H, Bu H), −0.60 (s, 3H, NiCH ). C NMR
600 MHz, C D ): δ 177.04 (NC), 160.13, 151.57, 150.91, 142.07,
39.85, 135.26, 134.20, 131.12, 128.90, 127.04, 125.70, 125.41, 124.96,
i
3
3
4.25 ( Pr CH ). Anal. Calcd for C H NO: C, 85.47; H, 7.17; N,
3
29 29
(
6 6
.44. Found: C, 85.39; H, 7.13; N, 3.39.
1
1
(
(
2,6- Pr C H )NCHCHC(p-Me NPh)OH (2e). Yield: 55%. 1H
i
i
2
6
3
2
23.25, 122.88 (Ar, Py), 96.95 (C), 28.24 ( Pr CH), 24.93, 23.19
NMR (300 MHz, CDCl ): δ 11.51 (d, J = 12.0 Hz, 1H, N−H),
i
3
Pr CH ), −6.79 (NiCH ). Anal. Calcd for C H N NiO: C, 73.11;
3
3
3
31 34
2
7
.92 (d, J = 6.0 Hz, 2H, Ar H), 7.26−7.17 (m, 3H, Ar H), 6.83 (dd,
HH
H, 6.73; N, 5.50. Found: C, 73.18; H, 6.70; N, 5.54.
3
3
JHH = 12.3, 7.8 Hz, 1H, NCH), 6.71 (d, J = 9.0 Hz, 2H, Ar H),
i
HH
[(2,6- Pr C H )NCHCHC(9-anthryl)O]Ni(Py)(CH ) (3d). Yield:
2
6
3
3
3
3
5
.91 (d, J = 7.8 Hz, 1H, CCH), 3.29 (sept, J = 6.9 Hz, 2H,
1
3
HH
HH
93%. H NMR (300 MHz, C D ): δ 8.69 (d, J = 8.7 Hz, 2H, Ar
6 6 HH
i
3
i
3
Pr CH), 3.06 (s, 3H, NCH ), 1.22 (d, J = 6.9 Hz, 12H, Pr CH ).
3
HH
3
H), 8.62 (d, J = 5.1 Hz, 2H, o-H Py), 8.05 (s, 1H, Ar H), 7.72 (d,
JHH = 7.8 Hz, 2H, Ar H), 7.31−7.00 (m, 6H, Ar H), 6.25 (t, J
7.8 Hz, 1H, p-H Py), 5.87 (t, J = 6.9 Hz, m-H Py), 5.56 (d, J
HH
1
3
3
3
C NMR (300 MHz, CDCl ): δ 190.34 (NC), 152.92, 145.05,
=
=
3
HH
3
3
1
37.11, 129.56, 127.65, 124.14, 111.40, (Ar), 91.49 (C), 40.55
HH
HH
i
i
3
i
(
NMe), 28.71 ( Pr CH), 24.28 ( Pr CH ). Anal. Calcd for C H N O:
6.0 Hz, 1H, CC−H), 4.71 (sept, J = 6.9 Hz, 2H, Pr CH), 1.66,
3
23 30
2
HH
3
i
13
C, 78.82; H, 8.63; N, 7.99. Found: C, 78.92; H, 8.57; N, 7.96.
1.38 (d, J = 6.9 Hz, 12H, Pr CH ), −0.45 (s, 3H, NiCH ).
C
HH
3
3
i
1
(
2,6- Pr C H )NCHCHC(p-MeOPh)OH (2f). Yield: 60%. H NMR
NMR (600 MHz, C D ): δ 176.26 (NC), 159.71, 151.45, 150.97,
2
6
3
6 6
(
300 MHz, CDCl ): δ 11.58 (d, J = 12.3 Hz, 1H, N−H), 7.96 (m, 2H,
141.99, 138.36, 135.12, 131.63, 129.03, 128.64, 128.29, 128.04, 127.01,
3
Ar H), 7.30−7.18 (m, 3H, Ar H), 6.97−6.86 (m, 3H, Ar H), 5.92 (d,
126.73, 125.74, 125.36, 125.01, 123.31, 122.82 (Ar, Py), 100.04 (C),
3
3
i
i
J
= 7.5 Hz, 1H, CCH), 3.88 (s, 3H, OCH ), 3.26 (sept, J
=
28.47 ( Pr CH), 24.95, 23.23 ( Pr CH ), −6.49 (NiCH ). Anal. Calcd
HH
3
HH
3
3
i
3
i
13
6
.9 Hz, 2H, Pr CH), 1.23 (d, J = 6.9 Hz, 12H, Pr CH ). C NMR
for C35
H N NiO: C, 75.15; H, 6.49; N, 5.01. Found: C, 75.08; H,
36 2
HH
3
(
1
300 MHz, CDCl ): δ 190.22 (NC), 162.64, 153.92, 145.04, 136.78,
6.51; N, 5.06.
3
i
32.57, 129.67, 127.93, 124.19, 113.97 (Ar), 91.53 (C), 55.75
[(2,6- Pr
2
C
6
H
3
)NCHCHC(p-Me
NPh)O]Ni(Py)(CH ) (3e). Yield:
2 3
89%. H NMR (300 MHz, C ): δ 8.82 (d, JHH = 5.1 Hz, 2H, o-
H Py), 7.88 (d, 2H, J = 8.7 Hz, Ar H), 7.29−7.15 (m, 3H, Ar H), 6.74
(t, JHH = 7.8 Hz, 1H, p-H Py), 6.52 (d, 2H, J = 8.7 Hz, Ar H), 6.37 (t,
i
i
1
3
(
OMe), 28.75 ( Pr CH), 24.24 ( Pr CH ). Anal. Calcd for C H NO :
D
6 6
3
22 27
2
C, 78.30; H, 8.06; N, 4.15. Found: C, 78.38; H, 8.02; N, 4.12.
i
1
3
(
2,6- Pr C H )NCHCHC(p-F CPh)OH (2g). Yield: 63%. H NMR
2
6
3
3
3
3
(
300 MHz, CDCl ): δ 11.75 (d, J = 12.3 Hz, 1H, N−H), 8.06 (m, 2H,
J
HH = 6.9 Hz, m-H Py), 6.06 (d, JHH = 6.6 Hz, 1H, CCH), 4.59
3
3
i
Ar H), 7.72 (m, 2H, Ar H), 7.72 (m, 3H, Ar H), 7.0 (m, 3H, Ar H),
(sept, JHH = 6.9 Hz, 2H, Pr CH), 2.49 (s, 6H, NCH ), 1.71, 1.38, (d,
3
3
i
3
i
13
5
(
.95 (m, 1H, CCH), 3.22 (sept, J = 6.9 Hz, 2H, Pr CH), 1.24
d, J = 6.9 Hz, 12H, Pr CH ). C NMR (300 MHz, CDCl ): δ
HH 3 3
J
HH = 6.9 Hz, 12H, Pr CH
3
), −0.46 (s, 3H, NiCH ). C NMR (600
3
MHz, C D ): δ 173.28 (NC), 159.48, 151.85, 151.40, 151.17, 142.47,
HH
3
i
13
6
6
189.40 (NC), 155.33, 144.96, 142.88, 136.29, 128.31, 127.97,
135.15, 125.43, 123.13, 122.74, 111.36 (Ar, Py), 90.74 (C), 39.44
9
73
dx.doi.org/10.1021/om2010194 | Organometallics 2012, 31, 966−975