Please do not adjust margins
ChemComm
DOI: 10.1039/C6CC02002J
COMMUNICATION
Journal Name
Notes and references
1
K. Hofstetter, J. Lutz, I. Lang, B. Witholt and A. Schmid,
Angew. Chem. Int. Ed., 2004, 43, 2163; X. Tong, B. El-Zahab,
X. Zhao, Y. Liu and P. Wang, Biotechnol. Bioeng., 2011, 108
65; S. L. Pival, M. Klimacek and B. Nidetzky, Adv. Synth.
Catal., 2008, 350, 2305.
,
4
2
H. Maid, P. Böhm, S. M. Huber, W. Bauer, W. Hummel, N. Jux
and H. Gröger, Angew. Chem. Int. Ed., 2011, 50, 2397; F.
Hollmann, B. Witholt and A. Schmid, J. Mol. Catal. B: Enzym.,
2
002, 19, 167; Y. Maenaka, T. Suenobu and S. Fukuzumi, J.
Am. Chem. Soc., 2011, 134, 367; J. J. Soldevila-Barreda, P. C.
Bruijnincx, A. Habtemariam, G. J. Clarkson, R. J. Deeth and P.
J. Sadler, Organometallics, 2012, 31, 5958; S. Betanzos-Lara,
Z. Liu, A. Habtemariam, A. M. Pizarro, B. Qamar and P. J.
Sadler, Angew. Chem. Int. Ed., 2012, 124, 3963.
3
W. Ma, D.-W. Li, T. C. Sutherland, Y. Li, Y.-T. Long and H.-Y.
Chen, J. Am. Chem. Soc., 2011, 133, 12366; M. Hambourger,
M. Gervaldo, D. Svedruzic, P. W. King, D. Gust, M. Ghirardi,
-
5
Figure 4 Fluorescence response of probe semi-CyHP (10 M)
-
-4
after adding artificial cofactors (5×10 M) and NTR (2.5 μg mL
1
A. L. Moore and T. A. Moore, J. Am. Chem. Soc., 2008, 130
2015.
,
o
in 0.1 M PBS buffer (pH 7.4) with 1% (v/v) DMSO at 37 C.
)
4
5
6
7
8
J. A. Rollin, T. K. Tam and Y. H. P. Zhang, Green Chem., 2013,
, 1708.
C. E. Paul, I. W. Arends and F. Hollmann, ACS Catal., 2014, 4,
The fluorescent intensity data were collected after certain time
intervals at around 575 nm as indicated in the figure with
excitation at 490 nm. Silt: 10, 10 nm.
1
5
788.
Q.-A. Chen, M.-W. Chen, C.-B. Yu, L. Shi, D.-S. Wang, Y. Yang
and Y.-G. Zhou, J. Am. Chem. Soc., 2011, 133, 16432.
Q.-A. Chen, K. Gao, Y. Duan, Z.-S. Ye, L. Shi, Y. Yang and Y.-G.
Zhou, J. Am. Chem. Soc., 2012, 134, 2442.
C. E. Paul, S. Gargiulo, D. J. Opperman, I. Lavandera, V.
Gotor-Fernández, V. Gotor, A. Taglieber, I. W. Arends and F.
Hollmann, Org. lett., 2012, 15, 180.
and the reductive product semi-CyHF was formed as expected.
By utilizing this three-component biocatalysis system which
selectively responds to NADH, we could replace NADH with
our artificial cofactors (2b-16b) (Fig. S2, ESI) to appraise the
effects of artificial cofactors based on the fluorescence
9
H. C. Lo and R. H. Fish, Angew. Chem. Int. Ed., 2002, 41, 478.
enhancement. The widely-used artificial cofactor BNAH could 10 T. Knaus, C. E. Paul, C. W. Levy, S. de Vries, F. G. Mutti, F.
Hollmann and N. S. Scrutton, J. Am. Chem. Soc., 2016, 138
033.
1 Z. Zhu, T.-K. Tam, F. Sun, C. You and Y. H. P. Zhang, Nat.
Commun., 2014, , 4026/1.
Fig. 4). This result could be ascribed to the enhanced π-π 12 H. C. Lo, O. Buriez, J. B. Kerr and R. H. Fish, Angew. Chem. Int.
,
increase fluorescence intensity by 5-fold. But 12-fold
enhancement in fluorescence emission at 575 nm was
1
1
observed by incubating semi-CyHP with 14b, 15b
,
16b and NTR
5
(
stacking effect of pyrido dihydropyrrolo scaffold (14b, 15b
,
16b)
Ed., 1999, 38, 1429.
3 P. L. Hentall, N. Flowers and T. D. H. Bugg, Chem. Commun.,
2001, 20, 2098.
4 H. C. Lo, C. Leiva, O. Buriez, J. B. Kerr, M. M. Olmstead and R.
H. Fish, Inorg. Chem., 2001, 40, 6705.
1
1
than BNAH. These results strongly suggest that an appropriate,
convenient, visible and high resolution evaluation system has
been established to appraise the hydride transfer ability of
artificial cofactors. These pyrido dihydropyrrolo analogues 15 L. E. Zimmer, C. Sparr and R. Gilmour, Angew. Chem., Int. Ed.,
could combine more tightly with NTR so that could realize the
reduction of nitro group in semi-CyHP, inducing the change of
color noticed by naked eyes and 12-fold enhancement of
fluorescence intensity.
2011, 50, 11860; H.-J. Boehm, D. Banner, S. Bendels, M.
Kansy, B. Kuhn, K. Mueller, U. Obst-Sander and M. Stahl,
ChemBioChem, 2004, 5, 637; P. Shah and A. D. Westwell, J.
Enzyme Inhib. Med. Chem., 2007, 22, 527; E. P. Gillis, K. J.
Eastman, M. D. Hill, D. J. Donnelly and N. A. Meanwell, J.
Med. Chem., 2015, 58, 8315.
In summary, through rational design, we developed novel
class artificial cofactors with low potential and good solubility. 16 U. Galli, O. Mesenzani, C. Coppo, G. Sorba, P. L. Canonico, G.
C. Tron and A. A. Genazzani, Eur. J. Med. Chem., 2012, 55, 58.
Moreover, we have established valid evaluation method based
1
1
7 P. Moutevelis-Minakakis, E. Papavassilopoulou and T.
Mavromoustakos, Molecules, 2012, 18, 50.
on fluorescence sensor to evaluate the hydride transfer ability
when co-working with flavin-containing enzyme. This novel
assessment system, to the best of our knowledge, was found
8 D. Mauzerall and F. Westheimer, J. Am. Chem. Soc., 1955, 77
2261.
,
to be the first time. These results prove that 14b, 15b, 16b 19 H.-J. Xu, Y.-C. Liu, Y. Fu and Y.-D. Wu, Org. lett., 2006,
8,
3
449.
perform better hydride transfer ability than widely-used
artificial cofactor BNAH. The introduction of fluorine into
pyrido dihydropyrrolo analogues results in 15b, featuring
2
0 R. J. Knox, F. Friedlos, M. Jarman, L. C. Davies, P. Goddard, G.
M. Anlezark, R. G. Melton and R. F. Sherwood, Biochem.
Pharmacol., 1995, 49, 1641.
several advantages, lower reduction potential than NADH, high 21 J. Yuan, Y.-Q. Xu, N.-N. Zhou, R. Wang, X.-H. Qian and Y.-F. Xu,
isolated yield in chemical system and 12-fold enhancement of
fluorescence intensity in biocatalysis.
RSC Adv., 2014, 4, 5620.
This work is financially supported by the National Natural
Science Foundation of China (Grants 21236002).
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins