7812
G. M. L. Consoli et al. / Tetrahedron Letters 47 (2006) 7809–7813
a
Table 1. Isomerisation reactions in dichloromethane solution
4. (a) Hamada, F.; Matsuda, T.; Kondo, Y. Supramol. Chem.
1995, 5, 129; (b) Shinkai, S. In Comprehensive Supramo-
lecular Chemistry; Lehn, J. M., Atwood, J. L., Davies, J.
E. D., MacNicol, D. D., V o¨ gtle, F., Eds.; Elsevier Science
Ltd, 1996; Vol. 1, p 671; (c) Saadioui, M.; Asfari, Z.;
Vicens, J. Tetrahedron Lett. 1997, 38, 1187; (d) Kim, N.
Y.; Chang, S.-K. J. Org. Chem. 1998, 63, 2362; (e)
Pipoosananakaton, B.; Sukwattanasinitt, M.; Jaiboon, N.;
Chaichit, N.; Tuntulani, T. Tetrahedron Lett. 2000, 41,
ꢀ
1 c
)
k
irr = 320 nm irr = 432 nm
k
k
c!t (s
b
b
U
t!c
% trans
U
c!t
% trans
ꢀ6
Azobenzene 0.12
16
19
18
0.33
0.49
0.44
80
83
65
3 · 10
1 · 10
—
ꢀ6
3
4
0.13
0.13
a
b
c
At rt, unless otherwise noted.
At photostationary state.
9
095; (f) Halouani, H.; Dumazet-Bonnamour, I.; Lamar-
Initial reaction rate at 308 K. Compound 4 undergoes decomposition.
tine, R. Tetrahedron Lett. 2002, 43, 3785; (g) Lee, S. H.;
Kim, J. Y.; Ko, J.; Lee, J. Y.; Kim, J. S. J. Org. Chem.
trans ! cis photoisomerisation at 320 nm are the same
as those of free azobenzene, whereas the quantum yield
for the cis ! trans photoisomerisation at 432 nm is
slightly higher for the azobenzene-bridged derivatives.
As far as the values of % trans at the stationary states
are concerned, they are difficult to rationalise since they
depend not only on the quantum yield values, but also
on values of the molar absorption coefficients that have
been taken to be those of free azobenzene for all the
investigated compounds.
2
2
004, 69, 2902; (h) Chen, C.-F.; Chen, Q.-Y. New J. Chem.
006, 30, 143.
5
. (a) Ichimura, K.; Oh, S.-K.; Nakagawa, M. Science 2000,
288, 1624; (b) Husaru, L.; Gruner, M.; Wolff, T.;
Habicher, W. D.; Salzer, R. Tetrahedron Lett. 2005, 46,
3377.
. Shinkai, S.; Nakaji, T.; Ogawa, T.; Manabe, O. J. Am.
Chem. Soc. 1980, 102, 5860, and references cited therein.
. Norikane, Y.; Kitamoto, K.; Tamaoki, N. Org. Lett. 2002,
6
7
8
4, 3907.
. (a) Gutsche, C. D. Calixarenes Revisited; Royal Society of
Chemistry: Cambridge, 1998; (b) Calixarene 2001; Asfari,
Z., Bohmer, V., Harrowfield, J., Eds.; Kluwer: Dordrecht,
In conclusion, the first azobenzene-bridged calix[8]-
arenes have been synthesised and trans–cis isomers of
the conformationally rigid 1,5:3,7-doubly bridged deriv-
ative 4 have been isolated. The photoresponsive behav-
iour of these compounds has also been investigated.
More in depth studies to evaluate the photoswitching
and complexing properties of 3 and 4 and to design ana-
logues with improved photophysical characteristics are
in progress.
2
001; Chapter 5, pp 89–109.
9. (a) Ikeda, A.; Suzuki, Y.; Akao, K.; Shinkai, S. Chem.
Lett. 1996, 963; (b) Geraci, C.; Chessari, G.; Piattelli, M.;
Neri, P. Chem. Commun. 1997, 921; (c) Gregoli, L.; Russo,
L.; Stefio, I.; Gaeta, C.; Arnaud-Neu, F.; Hubscher-
Bruder, V.; Khazaeli-Parsa, P.; Geraci, C.; Neri, P.
Tetrahedron Lett. 2004, 45, 6277.
0. Geraci, C.; Piattelli, M.; Chessari, G.; Neri, P. J. Org.
Chem. 2000, 65, 5143.
1. Singly bridged calix[8]arenes: (a) Geraci, C.; Piattelli, M.;
Neri, P. Tetrahedron Lett. 1996, 37, 3899; (b) Gaeta, C.;
Gregoli, L.; Martino, M.; Neri, P. Tetrahedron Lett. 2002,
1
1
Acknowledgements
4
3, 8875. Doubly bridged calix[8]arenes: (c) Geraci, C.;
Financial support from the Italian MIUR (Supramole-
cular Devices Project) is gratefully acknowledged. We
thank Professor Salvatore Giuffrida, Dr. Paola Ceroni
and Mrs. Silvia Parmeggiani for experimental assistance
and discussion.
Consoli, G. M. L.; Piattelli, M.; Neri, P. Collect. Czech.
Chem. Commun. 2004, 69, 1345.
0
1
1
2. 3,3 -Bis(a-bromomethyl)azobenzene was synthesized by
the procedure reported in: Bartels, E.; Wassermann, H.;
Erlanger, B. F. Proc. Natl. Acad. Sci. U.S.A. 1971, 8, 1820.
3. Procedure for the preparation of compound 3: A solution of
p-tert-butylcalix[8]arene
1
(250 mg, 0.19 mmol) and
References and notes
Cs CO (502 mg, 1.54 mmol) in 40 mL THF/DMF (3:1)
2
3
was stirred at room temperature for 20 min. Then a
0
12
1
. (a) Spichiger-Keller, U. S. Chemical Sensors and Biosen-
sors for Medical and Biological Applications; Wiley-VCH:
Weinheim, Germany, 1998; (b) Czarnik, A. W. Fluorescent
Chemosensors for Ion and Molecular Recognition; Amer-
ican Chemical Society: Washington, DC, 1993; (c) Amen-
dola, V.; Feringa, B. L. Molecular Switches; Wiley-VCH
GmbH: Weinheim, Germany, 2001; (d) Balzani, V.; Credi,
A.; Venturi, M. Molecular Devices and Machines—A
Journey into the Nano World; Wiley-VCH: Weinheim,
Germany, 2003.
solution of 3,3 -bis(a-bromomethyl)azobenzene (trans–
cis mixture, 142 mg, 0.38 mmol) in 40 mL of DMF was
added dropwise over a period of 2–3 h. The reaction
mixture was kept under low-pressure UV lamp, to increase
the amount of electrophile in the cis form, and vigorously
stirred at room temperature for 7 days. The solvent was
removed under vacuum and the residue was suspended in
0.1 N HCl. The crude product was recovered by filtration
and purified by column chromatography (SiO
2
, gradient
from 45:55 to 70:30 CH Cl /hexane) to afford orange
2
2
2
. (a) Rau, H. In Photochromism, Molecules and Systems;
D u¨ rr, H., Bouas-Laurent, H., Eds.; Elsevier: Amsterdam,
compound 3 in 33% yield. Procedure for the preparation of
compound 4: A solution of 1,5-calix[8]crown-3 2 (150 mg,
0.11 mmol) and 60% oil dispersion NaH (55 mg,
0.88 mmol) in dry THF/DMF (40 mL, 3:1, v/v) was
stirred at room temperature for 20 min. Then a solution of
1990, Chapter 4; (b) Jousselme, B.; Blanchard, P.;
Gallego-Planas, N.; Delaunay, J.; Allain, M.; Richomme,
P.; Levillain, E.; Roncalli, J. J. Am. Chem. Soc. 2003, 125,
0
2888; (c) Norikane, Y.; Kitamoto, K.; Tamaoki, N. J.
3,3 -bis(a-bromomethyl)azobenzene (81 mg, 0.22 mmol)
Org. Chem. 2003, 68, 8291.
in 20 mL of dry THF was added dropwise over a period
of 2–3 h. The mixture was kept under low-pressure UV
lamp and vigorously stirred at room temperature until the
disappearance of the starting material (2–3 days). The
solvent was removed under vacuum and the residue was
suspended in 0.1 N HCl. The crude product was recovered
3
. (a) Shinkai, S.; Minami, T.; Kasano, Y.; Manabe, O. J.
Am. Chem. Soc. 1983, 105, 1851; (b) Yoshii, K.; Machida,
S.; Horie, K. J. Polym. Sci. Part B: Polym. Phys. 2000, 38,
3098; (c) Tamaoki, N.; Koseki, K.; Yamaoka, T.; Man-
abe, O. Angew. Chem., Int. Ed. Engl. 1990, 29, 105.