511
S. Thapa et al.
Feature
Synthesis
Methyl 3′-Methoxybiphenyl-4-carboxylate (18)
(2) (a) Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; Knochel, P.
Angew. Chem. Int. Ed. 2006, 45, 6040. (b) Huo, S. Org. Lett. 2003,
5, 423.
(3) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int. Ed.
2005, 44, 4442.
(4) Yang, Z.-Q.; Geng, X.; Solit, D.; Pratilas, C. A.; Rosen, N.;
Danishefsky, S. J. J. Am. Chem. Soc. 2004, 126, 7881.
(5) Getmanenko, Y. A.; Twieg, R. J. J. Org. Chem. 2008, 73, 830.
(6) For reviews, see: (a) Thapa, S.; Shrestha, B.; Gurung, S. K.; Giri,
R. Org. Biomol. Chem. 2015, 13, 4816. (b) Beletskaya, I. P.;
Cheprakov, A. V. Coord. Chem. Rev. 2004, 248, 2337.
Purification by column chromatography (silica gel) gave 18 as a white
solid; yield: 176.9 mg (73%).
1H NMR (300 MHz, CDCl3): δ = 3.87 (s, 3 H), 3.94 (s, 3 H), 6.94 (dd, J =
8.1, 1.8 Hz, 1 H), 7.15 (t, J = 2.4 Hz, 1 H), 7.21 (d, J = 7.5 Hz, 1 H), 7.38
(t, J = 7.8 Hz, 1 H), 7.65 (d, J = 8.4 Hz, 2 H), 8.10 (d, J = 8.4 Hz, 2 H).
13C NMR (75 MHz, CDCl3): δ = 52.2, 55.4, 113.1, 113.6, 119.8, 127.2,
129.1, 130.0, 130.1, 141.5, 145.5, 160.1, 167.0.
GC-MS: m/z = 242.1.
(7) For selected examples, see: (a) Yang, C.-T.; Zhang, Z.-Q.; Liang, J.;
Liu, J.-H.; Lu, X.-Y.; Chen, H.-H.; Liu, L. J. Am. Chem. Soc. 2012,
134, 11124. (b) Terao, J.; Todo, H.; Begum, S. A.; Kuniyasu, H.;
Kambe, N. Angew. Chem. Int. Ed. 2007, 46, 2086. (c) Cahiez, G.;
Gager, O.; Buendia, J. Angew. Chem. Int. Ed. 2010, 49, 1278.
(d) Hintermann, L.; Xiao, L.; Labonne, A. Angew. Chem. Int. Ed.
2008, 47, 8246.
(8) For selected examples, see: (a) Takeda, T.; Matsunaga, K. I.;
Kabasawa, Y.; Fujiwara, T. Chem. Lett. 1995, 771. (b) Falck, J. R.;
Bhatt, R. K.; Ye, J. J. Am. Chem. Soc. 1995, 117, 5973. (c) Allred, G.
D.; Liebeskind, L. S. J. Am. Chem. Soc. 1996, 118, 2748. (d) Kang,
S.-K.; Kim, J.-S.; Choi, S.-C. J. Org. Chem. 1997, 62, 4208.
(9) For selected examples, see: (a) Gurung, S. K.; Thapa, S.; Kafle, A.;
Dickie, D. A.; Giri, R. Org. Lett. 2014, 16, 1264. (b) Yang, C.-T.;
Zhang, Z.-Q.; Liu, Y.-C.; Liu, L. Angew. Chem. Int. Ed. 2011, 50,
3904. (c) Thathagar, M. B.; Beckers, J.; Rothenberg, G. J. Am.
Chem. Soc. 2002, 124, 11858. (d) Zhou, Y.; You, W.; Smith, K. B.;
Brown, M. K. Angew. Chem. Int. Ed. 2014, 53, 3475. (e) You, W.;
Brown, M. K. J. Am. Chem. Soc. 2014, 136, 14730.
(10) For selected examples, see: (a) Gurung, S. K.; Thapa, S.;
Shrestha, B.; Giri, R. Synthesis 2014, 46, 1933. (b) Gurung, S. K.;
Thapa, S.; Vangala, A. S.; Giri, R. Org. Lett. 2013, 15, 5378.
(c) Tsubouchi, A.; Muramatsu, D.; Takeda, T. Angew. Chem. Int.
Ed. 2013, 52, 12719. (d) Cornelissen, L.; Lefrancq, M.; Riant, O.
Org. Lett. 2014, 16, 3024. (e) Cornelissen, L.; Cirriez, V.;
Vercruysse, S.; Riant, O. Chem. Commun. 2014, 50, 8018.
(11) (a) Thapa, S.; Basnet, P.; Gurung, S. K.; Giri, R. Chem. Commun.
2015, 51, 4009. (b) Takahashi, T.; Li, Y.; Stepnicka, P.; Kitamura,
M.; Liu, Y.; Nakajima, K.; Kotora, M. J. Am. Chem. Soc. 2002, 124,
576.
3′-Methoxybiphenyl-4-carbonitrile (19)
Purification by column chromatography (silica gel) gave 19 as a color-
less oil; yield: 148.5 mg (71%).
1H NMR (300 MHz, CDCl3): δ = 3.87 (s, 3 H), 6.97 (dd, J = 7.8, 2.1 Hz, 1
H), 7.10 (t, J = 2.1 Hz, 1 H), 7.17 (d, J = 7.5 Hz, 1 H), 7.40 (t, J = 7.8 Hz, 1
H), 7.66–7.73 (m, 4 H).
13C NMR (75 MHz, CDCl3): δ = 55.5, 111.1, 113.2, 114.0, 119.0, 119.8,
127.9, 130.3, 132.7, 140.7, 145.6, 160.2.
GC-MS: m/z = 209.1.
4-Methyl-4′-(trifluoromethyl)biphenyl (20)
Purification by column chromatography (silica gel) gave 20 as a white
solid; yield: 177.2 mg (75%).
1H NMR (300 MHz, CDCl3): δ = 2.42 (s, 3 H), 7.29 (d, J = 8.4, 2 H), 7.49–
7.52 (m, 2 H), 7.69 (s, 4 H).
13C NMR (75 MHz, CDCl3): δ = 21.3, 122.7, 125.8 (d, JCF = 3.8 Hz), 126.1
(d, JCF = 3.8 Hz), 127.2, 127.3, 127.8, 129.2 (d, JCF = 32.3 Hz), 129.9,
137.0, 138.3, 144.8.
19F NMR (282 Hz, CDCl3): δ = –60.8.
GC-MS: m/z = 236.1.
Acknowledgment
We thank the University of New Mexico (UNM) for financial support,
and upgrades to the NMR Facility (NSF grants CHE08-40523 and
CHE09-46690).
(12) Thapa, S.; Gurung, S. K.; Dickie, D. A.; Giri, R. Angew. Chem. Int.
Ed. 2014, 53, 11620.
Supporting Information
(13) Hofstee, H. K.; Boersma, J.; Van Der Kerk, G. J. M. J. Organomet.
Chem. 1978, 144, 255.
Supporting information for this article is available online at
(14) Thaler, T.; Knochel, P. Angew. Chem. Int. Ed. 2009, 48, 645.
(15) Hjelmgaard, T.; Tanner, D. Org. Biomol. Chem. 2006, 4, 1796.
(16) Karstens, W. F. J.; Moolenaar, M. J.; Rutjes, F. P. J. T.; Grabowska,
U.; Speckamp, W. N.; Hiemstra, H. Tetrahedron Lett. 1999, 40,
8629.
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
ortioInfgrmoaitn
References
(17) Malosh, C. F.; Ready, J. M. J. Am. Chem. Soc. 2004, 126, 10240.
(18) Thapa, S.; Kafle, A.; Gurung, S. K.; Montoya, A.; Riedel, P.; Giri, R.
Angew. Chem. Int. Ed. 2015, 54, 8236.
(19) (a) Hansen, A. L.; Ebran, J.-P.; Gøgsig, T. M.; Skrydstrup, T. J. Org.
Chem. 2007, 72, 6464. (b) Hunter, H. N.; Hadei, N.; Blagojevic, V.;
Patschinski, P.; Achonduh, G. T.; Avola, S.; Bohme, D. K.; Organ,
M. G. Chem. Eur. J. 2011, 17, 7845.
(1) For reviews, see: (a) Diederich, F.; Stang, P. J. Metal-Catalyzed
Cross-Coupling Reactions 1998. (b) Negishi, E.-i.; Hu, Q.; Huang,
Z.; Qian, M.; Wang, G. Aldrichimica Acta 2005, 38, 71. (c) Fu, G. C.
Acc. Chem. Res. 2008, 41, 1555. (d) Organozinc Reagents: A Prac-
tical Approach; Knochel, P.; Jones, P., Eds.; Oxford: New York,
1999.
(20) Koszinowski, K.; Böhrer, P. Organometallics 2009, 28, 771.
(21) Nilsson, M.; Wennerstrom, O. Acta Chem. Scand. 1970, 24, 482.
© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 504–511