10.1002/anie.202110736
Angewandte Chemie International Edition
COMMUNICATION
second molecule of HBPin results in the formation of F where the
second C-B bond is formed (the overall barrier for these steps is
11 kcal/mol) (see SI Figure S1). Facile B-H bond cleavage in F
Acknowledgements
Financial support by the Austrian Science Fund (FWF) is
gratefully acknowledged (Project No. P 33016-N). Centro de
Química Estrutural acknowledges the financial support of
Fundação para a Ciência e Tecnologia (UIDB/00100/2020).
Ph
n
Ph
BPi
n
BPi
R2
P
R2
P
H
n
M
H
n
M
CO
P
CO
CO
B
P
R2
CO
D
R2
n
HBPi
n
HBPi
Conflict of Interest
The authors declare no conflict of interest.
Ph
n
Ph
H
n
Pi
B
H
R2
P
R2
R2
P
H
P
CO
CO
n
BPi
n
M
n
M
M
Keywords: manganese alkyl complex ⋅ hydroboration ⋅ 1,2-
diboration ⋅ alkenes ⋅ alkynes
Ph
CO
CO
P
P
P
CO
1
CO
A
R2
R2
CO
R2
O
F
=
i
r
P
H
R
H
n
H
H
Pi
B
[1]
a) N. Miyaura, K. Yamada, A. Suzuki, Tetrahydron 1979, 36, 3437-
3440; b) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457-2483; c)
R. Martin, S. Buchwald, Acc. Chem. Res. 2008, 41, 1461-1473; d) S.
E. Hooshmand, B. Heidari, R. Sedghi, R. S. Varma, Green Chem.
2019,21, 381-405.
R2
H
P
R2
n
BPi
P
n
M
H
Ph
CO
n
M
P
Ph
H
CO
G
R2
CO
P
CO
J
R2
H
n
B
n
i
Pi
B
H
n
Pi
B
P
H
B
n
i
- P
R2
P
H
n
[2]
a) H. C. Brown, B. C. S. Rao, J. Org Chem. 1957, 22, 1136; b) H. C.
Brown, G. J Zweifel, J. Am. Chem. Soc. 1961, 83, 2544.
Ph
BPi
H
n
M
CO
P
6
CO
6
R2
[3]
[4]
[5]
C. M. Vogels, S. A. Westcott, Curr. Org. Chem. 2005, 9, 687–699.
D. Männing, H. Nöth, Angew. Chem Int. Ed. 1985, 24, 878-879.
a) M. Beller, C. Bolm (Eds.) Metal-Catalyzed Hydroboration Reactions.
In: Transition Metals for Organic Synthesis: Builing Blocks and Fine
Chemicals, Wiley-VCH: Weinheim, Germany, 1998; b) M. G., Wade,
K. Marder, A. K: Hughes (Eds.) Contemporary Boron Chemistry, Royal
Society of Chemistry: Cambridge, U.K., 2000.
Scheme 4. Simplified catalytic cycle for the trans-1,2-diboration
of phenyl acetylene with HBPin. Inset: X-ray structure of complex
6
results in the formation of the intermediate G containing a hydride
ligand and the product coordinated in η2-fashion. After product
release, the hydride intermediate J is formed which reacts with
phenyl acetylene to reform pre-catalyst A. This transformation
requires two steps involving C-H bond activation of the alkyne with
concomitant formation of a dihydrogen intermediate which readily
releases dihydrogen (for details see SI, Figures S2 and S3). J
may also react with HBPin to give isolable 6 as a dormant species,
which can be activated upon dissociation of HBPin.
In conclusion, the bench-stable alkyl bisphosphine Mn(I)
complex fac-[Mn(dippe)(CO)3(CH2CH2CH3)] turned out to be an
efficient catalyst for an additive-free hydroboration of terminal
alkenes and the trans-1,2-diboration of terminal alkynes with
HBPin. The diboration reaction is accompanied by dihydrogen
release. In the case of alkenes anti-Markovnikov hydroboration
takes place, while in the case of alkynes the reaction proceeds
with excellent trans-1,2-selectivity. The catalytic process is
initiated by migratory insertion of a CO ligand into the Mn-alkyl
bond to yield an acyl intermediate which undergoes B-H bond
cleavage of HBPin (in the case of alkenes) and rapid C-H bond
cleavage (in the case of alkynes) forming the active 16e- Mn(I)
boryl and acetylide catalysts [Mn(dippe)(CO)2(BPin)] and
[6]
For selected examples for Rh-catalyzed hydroboration reactions see:
a) H. Kono, K. Ito, Y. Nagai, Chem. Lett. 1975, 4, 1095–1096; b) J. M.
Brown, D. I. Hulmes, T. P. Layzell, Chem. Commun. 1993, 22, 1673-
1674; c) J. R. Smith, B.S.L. Collins, M. J. Hesse, M. A. Graham, E. L.
Myers, V. K. Aggarwal, J. Am. Chem. Soc. 2017, 139, 9148–9151; d)
Y.-X. Tan, F. Zhang, P.-P. X, S.-Q. Zhang, Y.-F. Wang, Q.-H. Li, P.
Tian, X. Hong, G.-Q. Lin; J. Am. Chem. Soc. 2019, 141, 12770–12779.
For selected examples for Ir-catalyzed hydroboration reactions see: a)
C. N. Inverson, M. R. III Smith, J. Am. Chem. Soc. 1999, 121, 7696–
7697; b) S. A. Westcott, T. B. Marder, R. T. Baker, J. C. Calabrese,
Can. J. Chem. 1993, 71, 930-936; c) T. Ohmura, Y. Yamamoto, N.
Miyaura, J. Am. Chem. Soc. 2000, 122, 4990–4991; d) H. Zhao, Q.
[7]
[8]
Gao, Y. Zhang, P. Zhang, S. Xu, Org.
Lett. 2020, 22, 2861-2866.
For selected examples for Cu-catalyzed hydroboration see: a) H. A.
Kerchner, J. Montgomery, Org. Lett. 2016, 18, 5760-5763; b) J. M.
Medina, T. Kang, T. G. Erbay, H. Shao, G. M. Gallego, S. Yang, M.
Tran-Dubé, P. F. Richardson, J. Derosa, R. T. Helsel, R. L. Patman, F.
Wang, C. P. Ashcroft, J. F. Braganza, I. McAlpine, P. Liu, K. M. Engle.
ACS Catal. 2019, 9, 11130-11136; c) H. Iwamoto, K. Kubota, H. Ito,
Chem. Commun. 2016, 52, 5916-5919.
For selected examples for Ni-catalyzed hydroboration reactions see:
a) S. Pereira, M. Srebnik, Tetrahedron Lett. 1996, 11, 3762-3765; b)
E. E. Tounex, R. Van Hoveln, C. T. Buttke, M. D. Freidberg, I. A. Guzei,
J.M. Schomaker, Organometallics 2016, 35, 3436-3439; c) J.-F. Li, Z.-
Z. Wei, Y.-Q. Wang, M. Ye, Green Chem. 2017, 19, 4498-4502; d) G.
Vijaykumar, M. Bhunia, S. K. Mandal, Dalton Trans. 2019,48, 5779-
5784.
For selected examples for Co-catalyzed hydroboration reactions see:
a) L. Zhang, Z. Zuo, X. Wan, Z. Huang, J. Am. Chem. Soc. 2014, 136,
15501–1504; b) T. Xi, Z. Lu, ACS Catal. 2017,7,1181-1185; c) S. R.
Tamang, D. Bedi, S. Shafiei-Haghighi, C. R. Smith, C. Crawford, M.
Findlater, Org. Lett. 2018, 20,6685-6770; d) M. Pang, C. Wu, X.
Zhuang, F. Zhang, M. Su, Q. Tong, C.-H. Tung, W. Wang,
Organometallics 2018, 37,1462-1467; e) P. K. Verma, A.S.
Sethulekshmi, K. Geetharani, Org. Lett. 2018, 20, 7840-7845; f) N. G.
Léonard, W. N. Palmer, M. R. Friedfeld, M. J. Bezdek, P. J. Chirik,
ACS Catal. 2019, 9, 9034-9044; g) J. Pecak, S. Fleissner, L. F. Veiros,
E. Pittenauer, B. Stöger, K. Kirchner, Organometallics 2021, 40, 278-
285.
[9]
[Mn(dippe)(CO)2(C≡CR)], respectively.
A broad variety of
[10]
aromatic and aliphatic alkenes and alkynes was efficiently and
selectively borylated. Mechanistic insights are provided based on
experimental data. In the case of the diboration reaction, a
detailed mechanism is provided based on DFT calculations
revealing that an acceptorless reaction pathway is operating
involving dihydrogen release.
[11]
For selected examples for Fe-catalyzed hydroboration reactions see:
a) K.-N. T. Tseng, J. W. Kampf, N. K. Szymczak, ACS Catal. 2015, 5,
This article is protected by copyright. All rights reserved.