Synlett
Letter / Cluster / New Tools
effective than the hydrogen oxalates for the present
photoelectrocatalytic alkylation reactions. In addition,
disproportionation cannot be avoided under the acidic
conditions, which are essential for the C–H alkylation of
heteroarenes. The stability issues associated with oxalates
hampered the further development of photoelectrocatalytic C–H
alkylation reactions with these agents.
Jiao, K.-J.; Xing, Y.-K.; Yang, Q.-L.; Qiu, H.; Mei, T.-S. Acc. Chem. Res.
2020, 53, 300. (p) Ackermann, L. Acc. Chem. Res. 2020, 53, 84.
(
2) (a) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075. (b)
Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113,
5
322. (c) Chen, J. R.; Hu, X. Q.; Lu, L. Q.; Xiao, W. J. Chem. Soc. Rev.
016, 45, 2044. (d) Narayanam, J. M. R.; Stephenson, C. R. J. Chem.
Soc. Rev. 2011, 40, 102.
(3) (a) Tajima, T.; Kurihara, H.; Fuchigami, T. J. Am. Chem. Soc. 2007,
29, 6680. (b) Xiang, J.; Shang, M.; Kawamata, Y.; Lundberg, H.;
2
1
A
possible
mechanism
was
proposed
for
the
Reisberg, S. H.; Chen, M.; Mykhailiuk, P.; Beutner, G.; Collins, M. R.;
Davies, A.; Del Bel, M.; Gallego, G. M.; Spangler, J. E.; Starr, J.; Yang,
S.; Blackmond, D. G.; Baran, P. S. Nature 2019, 573, 398. (c) Hou,
Z.-W.; Yan, H.; Song, J.-S.; Xu, H.-C. Chin. J. Chem. 2018, 36, 909. (d)
Xu, F.; Long, H.; Song, J.; Xu, H.-C. Angew. Chem. Int. Ed. 2019, 58,
9017.
photoelectrocatalytic C–H alkylation reaction based on
literature reports10 and our previous work (Scheme 3). Single
8
ox
electron transfer (SET) oxidation of the alkyl oxalate (E
V vs SCE for tBuOCOCO
CZIPN* (Ered = 1.35 V vs SCE) generates persistent radical
p
= 1.28
Cs)10 by the photoexcited catalyst
2
4
−
•
(
4) Wayner, D. D. M.; McPhee, D. J.; Griller, D. J. Am. Chem. Soc. 1988,
anion 4CzIPN• and alkyl radical R after double decarboxylation.
1
10, 132.
5) (a) Barham, J. P.; Konig, B. Angew. Chem. Int. Ed. 2020, 59, 11732.
b) Yu, Y.; Guo, P.; Zhong, J.-S.; Yuan, Y.; Ye, K.-Y. Org. Chem. Front.
020, 7, 131. (c) Liu, J.; Lu, L.; Wood, D.; Lin, S. ACS Cent. Sci. 2020,
6, 1317.
•
Addition of R onto protonated heterocycle I generates radical
(
cation II, which undergoes highly exothermic SET reduction
with 4CzIPN• to afford 1,2-dihydroquinoline III with
concomitant regeneration of the ground state catalyst 4CzIPN
(
2
−
Ered = -1.21 V vs SCE). II (Ep/2 = 0.47 V vs SCE for R = nBu) is
ox
(6) Molecular photoelectrochemistry employs molecules dispersed in
the solution or attached to the electrode surface as light absorber
as opposed to interfacial photoelectrochemistry that uses
semiconductor photoelectrodes. For a recent review on the
synthetic applications of the latter, see: Wu, Y.-C.; Song, R.-J.; Li, J.-
H. Org. Chem. Front. 2020, 7, 1895.
(
then oxidized at the anode through electron and proton loss to
furnish the final alkylated heterocycle IV.8b Protons are reduced
at the cathode to generate hydrogen gas, obviating the need for
sacrificial electron and proton acceptors.
(
(
(
7) (a) Moutet, J. C.; Reverdy, G. J. Chem. Soc. Chem. Commun. 1982,
54. (b) Chiba, K.; Yamaguchi, Y.; Tada, M. Tetrahedron Lett. 1998,
9, 9035. (c) Scheffold, R.; Orlinski, R. J. Am. Chem. Soc. 1983, 105,
200.
8) (a) Yan, H.; Hou, Z.-W.; Xu, H.-C. Angew. Chem. Int. Ed. 2019, 58,
592. (b) Lai, X.-L.; Shu, X.-M.; Song, J.; Xu, H.-C. Angew. Chem. Int.
In summary, an oxidant- and metal-free C–H alkylation reaction
of heteroarenes with alkyl oxalates have been achieved by
molecular photoelectrocatalysis with an organocatalyst.
Secondary and tertiary hydrogen oxalates undergo successful
decarboxylative alkylation with several types of N-
6
3
7
4
heteroaromatics and proceed through H
2
evolution.
Ed. 2020, 59, 10626. (c) Xu, P.; Chen, P.-Y.; Xu, H.-C. Angew. Chem.
Int. Ed. 2020, 59, 14275.
9) (a) Wang, F.; Stahl, S. S. Angew. Chem. Int. Ed. 2019, 58, 6385. (b)
Huang, H.; Strater, Z. M.; Rauch, M.; Shee, J.; Sisto, T. J.; Nuckolls, C.;
Lambert, T. H. Angew. Chem. Int. Ed. 2019, 58, 13318. (c) Huang,
H.; Lambert, T. H. Angew. Chem. Int. Ed. 2020, 59, 658. (d) Huang,
H.; Strater, Z. M.; Lambert, T. H. J. Am. Chem. Soc. 2020, 142, 1698.
(e) Kim, H.; Kim, H.; Lambert, T. H.; Lin, S. J. Am. Chem. Soc. 2020,
Funding Information
Financial support of this research from NSFC (21971213) is
acknowledged.
Acknowledgment
142, 2087. (f) Qiu, Y.; Scheremetjew, A.; Finger, L. H.; Ackermann,
We thank the support of Fundamental Research Funds for the Central
Universities.
L. Chem. Eur. J. 2020, 26, 3241. (g) Zhang, W.; Carpenter, K. L.; Lin,
S. Angew. Chem. Int. Ed. 2020, 59, 409. (h) Cowper, N. G. W.;
Chernowsky, C. P.; Williams, O. P.; Wickens, Z. K. J. Am. Chem. Soc.
Supporting Information
2020, 142, 2093. (i) Niu, L.; Jiang, C.; Liang, Y.; Liu, D.; Bu, F.; Shi,
R.; Chen, H.; Dutta Chowdhury, A.; Lei, A. J. Am. Chem. Soc. 2020,
DOI: 10.1021/jacs.0c08437.
YES (this text will be updated with links prior to publication)
(
10) Nawrat, C. C.; Jamison, C. R.; Slutskyy, Y.; MacMillan, D. W. C.;
Overman, L. E. J. Am. Chem. Soc. 2015, 137, 11270.
11) (a) Pitre, S. P.; Muuronen, M.; Fishman, D. A.; Overman, L. E. ACS
Catal. 2019, 9, 3413. (b) Zhang, X.-Y.; Weng, W.-Z.; Liang, H.; Yang,
H.; Zhang, B. Org. Lett. 2018, 20, 4686.
Primary Data
(
NO (this text will be deleted prior to publication)
References and Notes
(12) Gao, Y.; Wu, Z.; Yu, L.; Wang, Y.; Pan, Y. Angew. Chem. Int. Ed. 2020,
(1) (a) Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492. (b)
59, 10859.
Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
(13) For examples of electrochemical Minsci-type alkylation reactions,
see ref (12) and: (a) Dou, G.-Y.; Jiang, Y.-Y.; Xu, K.; Zeng, C.-C. Org.
Chem. Front. 2019, 6, 2392. (b) Wang, Q.-Q.; Xu, K.; Jiang, Y.-Y.;
Liu, Y.-G.; Sun, B.-G.; Zeng, C.-C. Org. Lett. 2017, 19, 5517. (c)
O'Brien, A. G.; Maruyama, A.; Inokuma, Y.; Fujita, M.; Baran, P. S.;
Blackmond, D. G. Angew. Chem. Int. Ed. 2014, 53, 11868. (d) Ding,
H.; Xu, K.; Zeng, C.-C. Journal of Catalysis 2020, 381, 38.
(
(
c) Horn, E. J.; Rosen, B. R.; Baran, P. S. ACS Cent. Sci. 2016, 2, 302.
d) Waldvogel, S. R.; Lips, S.; Selt, M.; Riehl, B.; Kampf, C. J. Chem.
Rev. 2018, 118, 6706. (e) Möhle, S.; Zirbes, M.; Rodrigo, E.;
Gieshoff, T.; Wiebe, A.; Waldvogel, S. R. Angew. Chem. Int. Ed.
2018, 57, 6018. (f) Yuan, Y.; Lei, A. Acc. Chem. Res. 2019, 52, 3309.
(g) Feng, R.; Smith, J. A.; Moeller, K. D. Acc. Chem. Res. 2017, 50,
2
3
346. (h) Yang, Q. L.; Fang, P.; Mei, T. S. Chin. J. Chem. 2018, 36,
38. (i) Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485. (j) Ye,
(14) Luo, J.; Zhang, J. ACS Catal. 2016, 6, 873.
(15) General procedure for the photoelectrochemical alkylation
reactions: A 10 mL Schlenk tube equipped with a magnetic stir
bar was charged with the heteroarene (0.2 mmol, 1.0 equiv),
oxalate (0.6 mmol, 3.0 equiv), 4CzIPN (0.002 mmol, 1 mol%),
Z.; Zhang, F. Chin. J. Chem. 2019, 37, 513. (k) Xiong, P.; Xu, H. C. Acc.
Chem. Res. 2019, 52, 3339. (l) Wang, H.; Gao, X.; Lv, Z.; Abdelilah,
T.; Lei, A. Chem. Rev. 2019, 119, 6769. (m) Siu, J. C.; Fu, N.; Lin, S.
Acc. Chem. Res. 2020, 53, 547. (n) Meyer, T. H.; Finger, L. H.;
Gandeepan, P.; Ackermann, L. Trends in Chemistry 2019, 1, 63. (o)
4 6
Et NPF (0.04 mmol, 0.2 equiv) and MeCN (6 mL). The Schlenk
tube was equipped with a reticulated vitreous carbon (100 PPI)
Template for SYNLETT © Thieme Stuttgart · New York
2020-10-23
page 3 of 4