research papers
Table 4
Hydrogen-bonding geometry (A, ).
This work was supported in part by a Grant-in-Aid for
Scienti®c Research (No. 10640496) from the Ministry of
Education, Science, Sports and Culture.
Ê
ꢁ
DÐHÁ Á ÁA
DÐH
HÁ Á ÁA
DÁ Á ÁA
DÐHÁ Á ÁA
i
(
I) N2ÐH2AÁ Á ÁO1
0
0.95 (2)
0.92 (2)
0.96
1.99 (2)
2.04 (2)
2.03
2.19
2.01
2.932 (2)
2.956 (2)
2.961
169 (2)
170 (2)
162
161
166
ii
i
N2ÐH2BÁ Á ÁO1
References
(
I ) N2ÐH2AÁ Á ÁO1
ii
N2ÐH2BÁ Á ÁO1
0.96
3.117
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla,
M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Cohen, M. D. & Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 1996±2000.
Cohen, M. D., Schmidt, G. M. J. & Sonntag, F. I. (1964). J. Chem. Soc.
pp. 2000±2013.
Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18,
1035±1038.
Enkelmann, V., Wegner, G., Novak, K. & Wagener, K. B. (1993). J.
Am. Chem. Soc. 115, 10390±10391.
Harada, J., Uekusa, H. & Ohashi, Y. (1999). J. Am. Chem. Soc. 121,
i
N2*ÐH2*AÁ Á ÁO1* 0.95
2.946 (3)
3.049 (3)
2.941 (3)
3.050 (2)
2.98 (2)
3.06 (1)
2.94 (2)
3.00 (2)
2.916 (3)
2.970 (3)
2.960 (2)
2.943 (2)
2.943 (2)
3.404 ²
2.939 (2)
3.122
3.257²
3.809²
3.025
3.049
2.925 (7)
3.007 (8)
3.005 (7)
3.163 (9)
ii
N2*ÐH2*BÁ Á ÁO1* 0.95
2.12
166
iii
(
(
II) N3ÐH3AÁ Á ÁO2
0.88 (3)
2.09 (2)
2.18 (2)
2.10
2.30
2.04
163 (2)
178 (2)
153
135
157
iv
N3ÐH3BÁ Á ÁO2
0.87 (2)
0.96
0.96
0
iii
II ) N3ÐH3AÁ Á ÁO2
iv
N3ÐH3BÁ Á ÁO2
iii
N3*ÐH3*AÁ Á ÁO2* 0.96
iv
N3*ÐH3*BÁ Á ÁO2* 0.96
2.05
171
v
(
(
(
III) N3ÐH3AÁ Á ÁO2
0.91 (3)
2.01 (3)
2.02 (3)
2.07 (2)
2.14 (2)
2.02 (2)
2.48
2.15 (2)
2.31
2.46
2.94
2.13
2.10
1.94
169 (2)
173 (2)
176 (2)
151 (1)
172 (2)
171
149 (1)
153
141
151
155
168
173
vi
N3ÐH3BÁ Á ÁO2
0.96 (3)
0.90 (2)
0.89 (2)
0.93 (2)
0.93 (2)
0.88 (2)
0.88 (2)
0.96
vii
IV) N2ÐH2AÁ Á ÁO1
5809±5810.
viii
N2ÐH2BÁ Á ÁO1
Hosomi, H., Ito, Y. & Ohba, S. (1998). Acta Cryst. B54, 907±911.
Hosomi, H., Ohba, S., Tanaka, K. & Toda, F. (2000). J. Am. Chem.
Soc. 122, 1818±1879.
Hung, J. D., Lahav, M., Luwisch, M. & Schmidt, G. M. J. (1972). Isr. J.
Chem. 10, 585±599.
Iwamoto, T. & Kashino, S. (1990). Acta Cryst. C46, 1332±1334.
Iwamoto, T. & Kashino, S. (1992). Bull. Chem. Soc. Jpn, 65, 2151±
2153.
0
vii
IV ) N2ÐH2AÁ Á ÁO1
vii
N2ÐH2AÁ Á ÁO1*
viii
N2ÐH2BÁ Á ÁO1
N2ÐH2BÁ Á ÁO1*
viii
vii
N2*ÐH2*AÁ Á ÁO1
vii
N2*ÐH2*AÁ Á ÁO1* 0.96
viii
viii
N2*ÐH2*BÁ Á ÁO1
0.96
N2*ÐH2*BÁ Á ÁO1* 0.96
ix
(
V) N3ÐH3AÁ Á ÁO2
0.99
0.96
Iwamoto, T., Kashino, S. & Haisa, M. (1989). Acta Cryst. C45, 1110±
x
N3ÐH3BÁ Á ÁO2
2.11
2.06
2.32
156
164
146
1112.
xi
N53ÐH53AÁ Á ÁO52 0.97
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge
National Laboratory, Oak Ridge, Tennessee, USA.
x
N53ÐH53BÁ Á ÁO52 0.97
1
2
3
2
1
2
1
2
1
2
Leibovitch, M., Olovsson, G., Scheffer, J. R. & Trotter, J. (1998). J.
Am. Chem. Soc. 120, 12755±12769.
Leiserowitz, L. & Schmidt, G. M. J. (1969). J. Chem. Soc. A, pp. 2372±
Symmetry codes: (i) � x; � y;� z; (ii) � x; y; � z; (iii) 1 � x;� y;2 � z; (iv)
1
2
3
2
1 3
2 2
1
� x; y; � z; (v) � x;1 � y;2 � z; (vi) � x;y �
;
� z; (vii) 2 � x;1 � y;3 � z;
(
data indicate a breaking of the hydrogen bond involving the photodimer.
viii) x;y � 1;z; (ix) 2 � x;1 � y;1 � z; (x) x;y;z � 1; (xi) � x;� y;1 � z: ² These
2382.
Mason, C. D. & Nord, F. F. (1951). J. Org. Chem. 16, 1869±1872.
Molecular Structure Corporation (1993). MSC/AFC Diffractometer
Control Software. MSC, 3200 Research Forest Drive, The Wood-
lands, TX 77381, USA.
Molecular Structure Corporation (1999). TEXSAN. Version 1.10b.
MSC, 3200 Research Forest Drive, The Woodlands, TX 77381,
USA.
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst.
A24, 351±359.
Novak, K., Enkelmann, V., Wegner, G. & Wagener, K. B. (1993).
Angew. Chem. Int. Ed. Engl. 32, 1614±1616.
Osaki, K. & Schmidt, G. M. J. (1972). Isr. J. Chem. 10, 189±193.
Pelletier, M. & Brisse, F. (1994). Acta Cryst. C50, 1942±1945.
Rabinovich, D. (1969). J. Chem. Soc. A, pp. 2361±2366.
Schmidt, G. M. (1964). J. Chem. Soc. pp. 2014±2021.
Sheldrick, G. M. (1997). SHELXL97. University of G oÈ ttingen,
Germany.
Suzuki, T. (1996). Pure Appl. Chem. 68, 281±284.
Tokitoh, N., Arai, Y., Sasamori, T., Okazaki, R., Nagase, S., Uekusa,
H. & Ohashi, Y. (1998). J. Am. Chem. Soc. 120, 433±434.
Vaida, M., Shimon, L. J. W., van Mil, J., Ernst-Cabrera, K., Addadi, L.,
Leiserowitz, L. & Lahav, M. (1989). J. Am. Chem. Soc. 111, 1029±
1034.
Crystal structures of the photodimer of (IV) have been
reported for monohydrate (Iwamoto & Kashino, 1990),
anhydrate monoclinic (Vaida et al., 1989) and anhydrate
triclinic forms (Iwamoto & Kashino, 1992). The mode of
hydrogen bonding in the latter crystal is similar to that in (V)
0
:
0
:
with the relationship of lattice constants a : b=2, b : 2a
0
:
and c : c.
4. Concluding remarks
Photodimerization in crystals of trans-4-methylcinnamamide,
trans-4-chlorocinnamamide and trans-cinnamamide was
observed by crystal-to-crystal transformations. The lower
photoreactivity of trans-cinnamamide is not only due to longer
CÁ Á ÁC distances between the nearest neighbor C C double
bonds, but also due to partial breakdown of the NÐHÁ Á ÁO
hydrogen-bond network by the photodimerization.
Acta Cryst. (2000). B56, 682±689
Hosomi et al. ꢀ trans-Cinnamamides 689