Chemistry Letters Vol.34, No.9 (2005)
1295
Support has been provided in part by a Grant-in-Aid for
Scientific Research, the Ministry of Education, Culture, Sports,
Science and Technology, Japan (21 COE on Kyoto University
Alliance for Chemistry).
R1
R2
HO
O
R
R1
R
+
B(OH)2
R2
[
Rh] OH
R1
−
[Rh] OH
References and Notes
H2O
Rh]
1
a) W. M. Clark, A. M. Tickner-Eldridge, G. K. Huang, L. N.
Pridgen, M. A. Olsen, R. J. Mills, I. Lantos, and N. H. Baine,
J. Am. Chem. Soc., 120, 4550 (1998). b) R. J. Mills, C. J. Kowalski,
L. Ping, and K. J. Gombatz, PCT Int. Appl. WO 1996-US18084
O
[
O
R
O
R
R2
R
R1
[
Rh]
1
9961108 (1997). c) A. G. Myers, P. J. Proteau, and T. M. Handel,
[
Rh]
R2
R2
R1
J. Am. Chem. Soc., 110, 7212 (1988). d) D. L. J. Clive and M. Yu,
Chem. Commun., 2002, 2380. e) D. L. J. Clive, M. Yu, and M.
Sannigrah, J. Org. Chem., 69, 4116 (2004).
A
B
C
Scheme 1. Proposed catalytic cycle of the rhodium-catalyzed
coupling of alkynes with ortho-carbonylated arylboronic acids.
2
3
4
a) Kuraray Co. Ltd., Jpn. Kokai Tokkyo Koho, JP 1980-17353
1
9800214 (1981). b) Kuraray Co. Ltd., Jpn. Kokai Tokkyo Koho,
JP 1980-131806 19800922 (1982). c) Y. Ishiguro, K. Okamoto,
F. Ojima, and Y. Sonoda, Chem. Lett., 1993, 1139.
These coupling reactions presumably go through a catalytic
cycle illustrated in Scheme 1. Thus, transmetallation of an aryl-
boronic acid to the hydroxorhodium catalyst forms arylrhodium
species A. An alkyne inserts into this carbon–rhodium bond to
generate alkenylrhodium intermediate B. Insertion of the car-
bonyl group at the ortho-position results in the formation of an
alkoxorhodium species with a five-membered carbocycle (C).
Hydrolysis of this intermediate produces the desired indenol
and regenerates the hydroxorhodium species.
Because the second carbon–carbon bond formation of this
process (i.e., B ! C) creates a stereogenic center, the use of a
proper chiral ligand might be able to show a good control on
the stereochemical outcome. In this regard, because Rh/phos-
phine complexes do not catalyze these reactions as described
in Eq 1, the use of chiral phosphine ligands is not promising
for the development of an asymmetric variant. We therefore
decided to employ chiral diene ligands on the basis of the high
efficiency of Rh/cod catalyst as demonstrated in Table 1. For ex-
ample, in the reaction of alkyne 1g with 2-formylphenylboronic
a) H. H. Szmant and R. Nanjundiah, J. Org. Chem., 43, 1835
(1978). b) H. C. Gibbard, C. J. Moody, and C. W. Rees, J. Chem.
Soc., Perkin Trans. 1, 1985, 723. c) J. A. Pincock and I. S. Young,
Can. J. Chem., 81, 1083 (2003).
Palladium catalysis: a) J. Vincente, J.-A. Abad, and J. Gil-Rubio, J.
Organomet. Chem., 436, C9 (1992). b) L. G. Quan, V. Gevorgyan,
and Y. Yamamoto, J. Am. Chem. Soc., 121, 3545 (1999). c) V.
Gevorgyan, L. G. Quan, and Y. Yamamoto, Tetrahedron Lett.,
40, 4089 (1999). Nickel catalysis: d) D. K. Rayabarapu and C.-H.
Cheng, Chem. Commun., 2002, 942. e) D. K. Rayabarapu, C.-H.
Yang, and C.-H. Cheng, J. Org. Chem., 68, 6726 (2003). Cobalt
catalysis: f) K.-J. Chang, D. K. Rayabarapu, and C.-H. Cheng,
Org. Lett., 5, 3963 (2003). g) K.-J. Chang, D. K. Rayabarapu,
and C.-H. Cheng, J. Org. Chem., 69, 4781 (2004).
5
6
For examples of stoichiometric convergent synthesis of indenols,
see: a) N. P. Robinson, L. Main, and B. K. Nicholsen, J. Organo-
met. Chem., 364, C37 (1989). b) L. S. Liebeskind, J. R. Gasdaska,
and J. S. McCallum, J. Org. Chem., 54, 669 (1989). c) J. Vincente,
J.-A. Abad, B. L o´ pez-Pel a´ ez, and E. Mart ´ı nez-Viviente, Organo-
metallics, 21, 58 (2002).
There have been some scattered examples for the synthesis of enan-
tio-enriched indenols. a) Catalytic asymmetric reduction of an in-
denone: Ref 1a. b) Kinetic resolution by lipase: M. B. Onaran
and C. T. Seto, J. Org. Chem., 68, 8136 (2003). c) Stoichiometric
asymmetric epoxidation followed by a ring-opening: Ref 1c. d)
Ring-closing metathesis of an enantio-enriched substrate: Refs 1d
and 1e.
ꢀ
acid, the use of (R,R)-Ph-bod , a C2-symmetric chiral diene
1
0,11
ligand developed in our group, regioselecitvely furnished
indenol 2g in 97% yield with 70% ee (Eq 3). By changing the
ꢀ
10,12
ligand to (S,S)-Bn-bod ,
to 81% ee with excellent yield and regioselectivity.
the enantioselectivity is improved
[RhCl(C2H4)2]2
7
For examples of the use of ortho-functionalized arylboron reagents
in the rhodium-catalyzed addition cyclization reactions, see: a) M.
Lautens and J. Mancuso, Org. Lett., 4, 2105 (2002). b) M. Lautens
and J. Mancuso, J. Org. Chem., 69, 3478 (2004). c) M. Lautens and
T. Marquardt, J. Org. Chem., 69, 4607 (2004). Very recently,
another example appeared using 2-cyanophenylboronic acid:
d) T. Miura and M. Murakami, Org. Lett., 7, 3339 (2005).
T. Hayashi, K. Inoue, N. Taniguchi, and M. Ogasawara, J. Am.
Chem. Soc., 123, 9918 (2001).
O
R
OH
(
5 mol% Rh)
H
ligand (5.5 mol%)
*
+
(3)
KOH (0.3 equiv.)
dioxane/H2O (10/1)
35 °C, 4 h
B(OH)2
R
Me
1g
Me
1
.5 equiv.
2g
R = C(Me)(CO2Me)2
8
9
1
Ph
Terminal alkynes are not suitable coupling partners under these
conditions.
Ph
Ph
Ph
R,R)-Ph-bod*
(
(S,S)-Bn-bod*
0 a) N. Tokunaga, Y. Otomaru, K. Okamoto, K. Ueyama, R.
Shintani, and T. Hayashi, J. Am. Chem. Soc., 126, 13584 (2004).
b) Y. Otomaru, K. Okamoto, R. Shintani, and T. Hayashi, J. Org.
Chem., 70, 2503 (2005). c) R. Shintani, T. Kimura, and T. Hayashi,
Chem. Commun., 2005, 3213.
9
7% yield, 70% ee
97:3 regioselecitivity)
97% yield, 81% ee
(>98:2 regioselecitivity)
(
In summary, we have developed a rhodium-catalyzed
regioselective synthesis of indenols through the coupling of al-
kynes with ortho-carbonylated arylboronic acids. These reac-
tions proceed under mild conditions in uniformly high yield
and regioselectivity. The reaction has also been applied to its
asymmetric variant by using chiral diene ligands, achieving high
enantioselectivity. Future studies will explore further expansion
of the scope of this and related processes.
1
1 See also: a) T. Hayashi, K. Ueyama, N. Tokunaga, and K. Yoshida,
J. Am. Chem. Soc., 125, 11508 (2003). b) C. Defieber, J.-F. Paquin,
S. Serna, and E. M. Carreira, Org. Lett., 6, 3873 (2004).
2 a) R. Shintani, K. Okamoto, Y. Otomaru, K. Ueyama, and T.
Hayashi, J. Am. Chem. Soc., 127, 54 (2005). b) R. Shintani, A.
Tsurusaki, K. Okamoto, and T. Hayashi, Angew. Chem., Int. Ed.,
44, 3909 (2005).
1
Published on the web (Advance View) August 20, 2005; DOI 10.1246/cl.2005.1294