Page 3 of 3
ChemComm
-
CF3SO2
•
trace metal
t-BuO•
(h) O. A. Tomashenko, E. C. Escudero-Adán, M. Martínez Belmonte,
V. V. Grushin, Angew. Chem., Int. Ed. 2011, 50, 7655; (i) H. Kondo,
M. Oishi, K. Fujikawa, H. Amii, Adv. Synth. Catal. 2011, 353, 1247;
(j) Z. Weng, R. Lee, W. Jia, Y. Yuan, W. Wang, X. Feng, K.-W.
Huang, Organometallics 2011, 30, 3229; (k) T. Knauber, F. Arikan,
G.-V. Röschenthaler, L. J. Gooßen, Chem. Eur. J. 2011, 17, 2689; (l)
Y. Li, T. Chen, H. Wang, R. Zhang, K. Jin, X. Wang, C. Duan, Synlett
2011, 1713; (m) B. S. Samant, G. W. Kabalka, Chem. Commun. 2011,
47, 7236; (n) T. Schareina, X.-F. Wu, A. Zapf, A. Cotte, M. Gotta, ,
M. Beller, Top. Catal. 2012, 55, 426.
CF3
+ SO2
+
t-BuO-
t-BuOOH
OH-
R-
Cu(II)Ln
7
65
70
75
80
85
90
ArB(OH)2
R•
•
CF3
B(OH)2Ln
5
Cu(III)CF3Ln
11
Cu(I)Ln
ArCu(II)Ln
Path A
10
8
Path B
ArB(OH)2
4
For recent selected samples, see: (a) L. Chu, F.-L. Qing, Org. Lett.
2010, 12, 5060; (b) T. D. Senecal, A. T. Parsons, S. L. Buchwald, J.
Org. Chem. 2011, 76, 1174; (c) T. Liu, Q. Shen, Org. Lett. 2011, 13,
2342; (d) J. Xu, D.-F. Luo, B. Xiao, Z.-J. Liu, T.-J. Gong, Y. Fu, L.
Liu, Chem. Commun. 2011, 47, 4300; (e) C.-P. Zhang, J. Cai, C.-B.
Zhou, X.-P. Wang, X. Zheng, Y.-C. Gu, J.-C. Xiao, Chem. Commun.
2011, 47, 9516; (f) X. Jiang, L. Chu, F.-L. Qing, J. Org. Chem. 2012,
77, 1251; (g) B. A. Khan, A. E. Buba, L. J. Gooßen, Chem. Eur. J.
2012, 18, 1577; (h) N. D. Litvinas, P. S. Fier, J. F. Hartwig, Angew.
Chem., Int. Ed. 2012, 51, 536; (i) T. Liu, X. Shao, Y. Wu, Q. Shen,
Angew. Chem., Int. Ed. 2012, 51, 540; (j) P. Novák, A. Lishchynskyi,
V. V. Grushin, Angew. Chem., Int. Ed. 2012, 51, 7767.
B(OH)2Ln
•
ArCF3
CF3
CF3Cu(III)LnAr
10
9
R = CF3 or t-BuO
Scheme 2 Proposed reaction mechanism
the catalytic cycle. Another mechanistic pathway which we can
not exclude at this point is the reaction of the Cu(II) complex 7
15 with CF3 radicals to generate the aryl copper(III) complex 11.6b
Subsequent transmetallation with the aryl- or vinylboronic acid
will lead again to intermediate 9 (path B).
5
(a) X. Wang, L. Truesdale, J.-Q. Yu, J. Am. Chem. Soc. 2010, 132,
3648; (b) X.-G. Zhang, H.-X. Dai, M. Wasa, J.-Q. Yu, J. Am. Chem.
Soc. 2012, 134, 11948; (c) A. Hafner, S. Bräse, Angew. Chem. Int. Ed.
2012, 51, 3713.
In summary, this communication reports a convenient Cu-
catalyzed trifluoromethylation of aryl- and vinylboronic acids
20 using less expensive and stable CF3SO2Na as CF3 source.
Although a large quantity of TBHP was used, synthetic
applications are not limited because of the very low cost. The
protocol is robust and the reactions work in water and DCM
under air atmosphere at room temperature. Notably, the presented
25 methodology makes use of cooperative transition metal catalysis
and CF3 radical formation. Furthermore, it suggests a new
orientation in organic transformations.9,16
6
7
(a) X. Mu, S. Chen, X. Zhen, G. Liu, Chem. Eur. J. 2011, 17, 6039;
(b) L. Chu, F.-L. Qing, J. Am. Chem. Soc. 2012, 134, 1298.
(a) B. R. Langlois, E. Laurent, N. Roidot, Tetrahedron Lett. 1991, 32,
7525; (b) N. Kamigata, T. Ohtsuka, T. Fukushima, M. Yoshida, T.
Shimizu, J. Chem. Soc. Perkin Trans I. 1994, 1339. (c) D. A. Nagib,
D. W. C. MacMillan, Nature 2011, 480, 224; (d) Y. Ji, T. Brueckl, R.
D. Baxter, Y. Fujiwara, I. B. Seiple, S. Su, D. G. Blackmond, P. S.
Baran, Pro. Natl. Acad. Sci. U. S. A. 2011, 108, 14411; (e) Y. Ye, S.
H. Lee, M. S. Sanford, Org. Lett. 2011, 13, 5464.
95
8
9
B. R. Langlois, E. Laurent, N. Roidot, Tetrahedron Lett. 1992, 33,
1291.
Notes and references
(a) Y. Ye, M. S. Sanford, J. Am. Chem. Soc. 2012, 134, 9034. (b) Q.
Qi, Q. Shen, L. Lu, J. Am. Chem. Soc. 2012, 134, 6548; (c) during
review of our manuscript, a related copper-mediated work was
reported: Y.Ye, S. A. Künzi, M. S. Sanford, Org. Lett. 2012, 14,
4979.
Leibniz-Institut für Katalyse e.V. an der Universität Rostock; Albert
:
100
30 Einstein
Str.
29a,18059
Rostock,
Germany;
E-mail
† Electronic Supplementary Information (ESI) available: [details of any
supplementary information available should be included here]. See
DOI: 10.1039/b000000x/
10 H. G. Kuivila, A. G. Armour, J. Am. Chem. Soc. 1957, 79, 5659.
105 11 (a) V. V. Grushin, W. J. Marshall, J. Am. Chem. Soc. 2006, 128,
4632; (b) V. V. Grushin, W. J. Marshall, J. Am. Chem. Soc. 2006, 128,
12644; (c) N. D. Ball, J. W. Kampf, M. S. Sanford, J. Am. Chem. Soc.
2010, 132, 2878; (d) Y. Ye, N. D. Ball, J. W. Kampf, M. S. Sanford, J.
Am. Chem. Soc. 2010, 132, 14682; (e) N. D. Ball, J. B. Gary, Y. Ye,
35 † The corresponding boronic ester of substrate 1l (2-(biphenyl-4-yl)-5,5-
dimethyl-1,3,2-dioxaborinane) was selected as a sample to detect the
other by-products or the remaining STM because of the practicable
dectection. In the same reaction condition as 1l, product 4l was obtained
in 22% yield (GC yield) accompanying with 53% STM. (GC yield ).
110
115
120
125
130
M. S. Sanford, J. Am. Chem. Soc. 2011, 133, 7577; (f) X. Mu, T. Wu,
H.-Y. Wang, Y.-L. Guo, G. Liu, J. Am. Chem. Soc. 2012, 134, 878.
12 M. Shimizu, Y. Takeda, M. Higashi, T. Hiyama, Angew Chem., Int.
Ed. 2009, 48, 3653.
40
45
50
55
60
1
(a) M. Schlosser, Angew.Chem., Int. Ed. 2006, 45, 5432; (b) K.
Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881; (c) W. K.
Hagmann, J. Med. Chem. 2008, 51, 4359; (d) K. L. Kirk, Org.
Process Res. Dev. 2008, 12, 305; (e) S. Purser, P. R. Moore, S.
Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320.
13 (a) T. Kitazume, N. Ishikawa, J. Am. Chem. Soc. 1985, 107, 5186; (b)
Q.-Y. Chen, S.-W. Wu, J. Chem. Soc., Chem. Commun. 1989, 705; (c)
Q.-Y. Chen, J.-X. Duan, J. Chem. Soc., Chem. Commun. 1993, 1389;
(d) J. Duan, D. Su, Q. Chen, J. Fluorine Chem. 1993, 61, 279; (e) T.
Hanamoto, N. Morita, K. Shindo, Eur. J. Org. Chem. 2003, 4279; (f)
X.-G. Zhang, M.-W. Chen, P. Zhong, M.-L. Hu, J. Fluorine Chem.
2008, 129, 335; (g) S. M. Landge, D. A. Borkin, B. Torok, Lett. Org.
Chem. 2009, 6, 439; (h) A. Hafner, S. Bräse, Adv. Synth. Catal. 2011,
353, 3044; (i) A. T. Parsons, T. D. Senecal, S. L. Buchwald, Angew
Chem., Int. Ed. 2012, 51, 2947; (j) G. K. S. Prakash, H. S. Krishnan, P.
V. Jog, A. P. Iyer, G. A. Olah, Org. Lett. 2012, 14, 1146; (k) C. Feng,
L.-P. Loh, Chem. Sci. 2012, 3, 3458.
14 No (Z) isomer was observed by 1H NMR.
15 C. Chen, Y. Xie, L. Chu, R.-W. Wang, X. Zhang, F.-L. Qing, Angew.
Chem., Int. Ed. 2012, 51, 2492.
16 (a) W.-Y. Yu, W. N. Sit, Z. Zhou, A. S. C. Chan, Org. Lett. 2009, 11,
3174; (b) D. Kalyani, K. B. McMurtrey, S. R. Neufeldt, M. S. Sanford,
J. Am. Chem. Soc. 2011, 133, 18566.
2
For the selected recent reviews, see: (a) V. V. Grushin, Acc. Chem.
Res. 2010, 43, 160; (b) R. J. Lundgren, M. Stradiotto, Angew. Chem.,
Int. Ed. 2010, 49, 9322; (c) S. Roy, B. T. Gregg, G. W. Gribble, V.-D.
Le, Tetrahedron 2011, 67, 2161; (d) O. A. Tomashenko, V. V.
Grushin, Chem. Rev. 2011, 111, 4475; (e) T. Besset, C. Schneider, D.
Cahard, Angew. Chem., Int. Ed. 2012, 51, 5048; (f) X.-F. Wu, H.
Neumann, M. Beller, Chem. Asian J. 2012, 7, 1744.
3
For the recent selected samples, see: (a) G. G. Dubinina, H. Furutachi,
D.A. Vicic, J. Am. Chem. Soc. 2008, 130, 8600; (b) G. G. Dubinina, J.
Ogikubo, D. A. Vicic, Organometallics 2008, 27, 6233; (c) M. Oishi,
H. Kondo, H. Amii, Chem. Commun. 2009, 1909; (d) E. J. Cho, T. D.
Senecal, T. Kinzel, Y. Zhang, D. A. Watson, S. L. Buchwald, Science
2010, 328, 1679; (e) A. Zanardi, M. A. Novikov, E. Martin, J. Benet-
Buchholz, V. V. Grushin, J. Am. Chem. Soc. 2011, 133, 20901; (f) C.-
P. Zhang, Z.-L. Wang, Q.-Y. Chen, C.-T. Zhang, Y.-C. Gu, J.-C. Xiao,
Angew. Chem., Int. Ed. 2011, 50, 1896; (g) H. Morimoto, T. Tsubogo,
N. D. Litvinas, J. F. Hartwig, Angew. Chem. Int. Ed. 2011, 50, 3793;
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3