Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
W.-H. Wang; J. T. Muckerman; E. Fujita; Y. Himeda, Inorg.
to lactic acid via isomerization, dehydration and intramolecular
Cannizzaro reaction.19b Bicarbonate next binds to the catalyst
and undergoes a hydroxide elimination, which has been
previously proposed by DFT calculations for the Ru-catalysed
Nozaki, J. Am. Chem. Soc., 2009, 131, 1D4O16I:810-1.1401369/9C.8CC03157F
(a) A. Boddien; D. Mellmann; F. Gärtner; R. Jackstell; H.
Junge; P. J. Dyson; G. Laurenczy; R. Ludwig; M. Beller,
Science, 2011, 333, 1733-1736; (b) Y. Zhang; A. D. MacIntosh;
J. L. Wong; E. A. Bielinski; P. G. Williard; B. Q. Mercado; N.
Hazari; W. H. Bernskoetter, Chem. Sci., 2015, 6, 4291-4299;
(c) C. Federsel; A. Boddien; R. Jackstell; R. Jennerjahn; P. J.
Dyson; R. Scopelliti; G. Laurenczy; M. Beller, Angew. Chem.
Int. Ed., 2010, 49, 9777-9780.
8
9
hydrogenation of bicarbonate.15 The resulting H-Ru-CO2
23
complex undergoes insertion15,
to generate ruthenium
formate. The final formate dissociation is likely facilitated by the
polar aqueous reaction medium, which allows excellent
solvation of formate anions, making the dissociation
energetically possible in water. 15
Y. M. Badiei; W. H. Wang; J. F. Hull; D. J. Szalda; J. T.
Muckerman; Y. Himeda; E. Fujita, Inorg. Chem., 2013, 52,
12576-12586.
10 (a) S. Moret; P. J. Dyson; G. Laurenczy, Nat. Commun., 2014,
5, 4017; (b) S. Ogo; R. Kabe; H. Hayashi; R. Harada; S.
Fukuzumi, Dalton Trans., 2006, 4657-4663; (c) S. M. Lu; Z. J.
Wang; J. Li; J. L. Xiao; C. Li, Green Chem., 2016, 18, 4553-
4558.
11 (a) F. Joó; G. Laurenczy; P. Karády; J. Elek; L. Nádasdi; R.
Roulet, Appl. Orgmet. Chem., 2000, 14, 857-859; (b) G. Zhao;
F. Joó, Catal. Commun., 2011, 14, 74-76; (c) D. Jantke; L.
Pardatscher; M. Drees; M. Cokoja; W. A. Herrmann; F. E.
Kuhn, Chemsuschem, 2016, 9, 2849-2854.
12 (a) F. Joó; L. Nádasdi; J. Elek; G. Laurenczy, Chem. Commun.,
1999, 971-972; (b) H. Horváth; G. Laurenczy; Á. Kathó, J.
Orgmet. Chem., 2004, 689, 1036-1045; (c) S. S. Bosquain; A.
Dorcier; P. J. Dyson; M. Erlandsson; L. Gonsalvi; G. Laurenczy;
M. Peruzzini, Appl. Orgmet. Chem., 2007, 21, 947-951; (d) G.
Laurenczy; F. Joó; L. Nádasdi, Inorg. Chem., 2000, 39, 5083-
5088.
13 M. Erlandsson; V. R. Landaeta; L. Gonsalvi; M. Peruzzini; A. D.
Phillips; P. J. Dyson; G. Laurenczy, Eur. J. Inorg. Chem., 2008,
2008, 620-627.
Conclusions
Here we demonstrate a homogeneous catalytic process for CO2
and bicarbonate transfer hydrogenation (TH) from glycerol with
a water-soluble Ru N-heterocyclic carbene complex (cat 1) and
base. The reaction selectively affords two value-added
products: potassium formate and lactate. Calculations show
that TH of CO2 and bicarbonate are made thermodynamically
more favourable by the ultimate conversion of glycerol to lactic
acid. As a result, CO2 TH from glycerol becomes significantly
more favorable than direct hydrogenation under basic
conditions. Equimolar amounts of lactate and formate are
afforded (~600 turnovers) at 150 ˚C, while greater lactate than
formate production is observed at T > 150 ˚C. At 180 ˚C cat
1
affords 1685 and 1065 turnovers respectively of lactate and
formate in 24 h. Carbonate salts can also be utilized in place of
CO2, affording 42610, 3588 and 5649 turnovers respectively for
lactate, formate and 1,2-propanediol. A preliminary mechanism 14 C. Federsel; A. Boddien; R. Jackstell; R. Jennerjahn; P. J.
Dyson; R. Scopelliti; G. Laurenczy; M. Beller, Angewandte
Chemie-International Edition, 2010, 49, 9777-9780.
15 G. Kovacs; G. Schubert; F. Joo; I. Papai, Catal. Today, 2006,
115, 53-60.
is proposed, but further experimental and theoretical
investigations of mechanism, as well as comparable activity of
other catalyst precursors, are under investigation.
16 (a) A. Azua; S. Sanz; E. Peris, Chemistry, 2011, 17, 3963-3967;
(b) S. Sanz; A. Azua; E. Peris, Dalton Trans., 2010, 39, 6339-
6343; (c) S. Sergio; B. t. Miriam; P. Eduardo, Organometallics,
2010, 29, 275–277.
17 M. Pagliaro; R. Ciriminna; H. Kimura; M. Rossi; C. Della Pina,
Angew Chem Int Edit, 2007, 46, 4434-4440.
Conflicts of interest
There are no conflicts to declare.
18 (a) J. Su; L. S. Yang; X. K. Yang; M. Lu; B. Luo; H. F. Lin, ACS
Sust. Chem. Eng., 2015, 3, 195-203; (b) A. Dibenedetto; P.
Stufano; F. Nocito; M. Aresta, ChemSusChem, 2011, 4, 1311-
1315; (c) A. Azua; J. A. Mata; E. Peris, Organometallics, 2011,
30, 5532-5536.
Notes and references
1
(a) J. Artz; T. E. Muller; K. Thenert; J. Kleinekorte; R. Meys; A.
Sternberg; A. Bardow; W. Leitner, Chem Rev, 2018, 118, 434-
504. (bP. G. Jessop; T. Ikariya; R. Noyori, Chem. Rev., 1995,
95, 259-272;
19 (a) L. S. Sharninghausen; J. Campos; M. G. Manas; R. H.
Crabtree, Nat. Commun., 2014, 5; (b) Z. Y. Lu; I. Demianets;
2
3
4
5
6
M. G. Mura; L. D. Luca; G. Giacomelli; A. Porcheddu, Adv.
Synth. Catal., 2012, 354, 3180-3186;
R. Hamze; N. J. Terrile; T. J. Williams, ACS Catal., 2016, 6,
2014-2017; (c) Y. Li; M. Nielsen; B. Li; P. H. Dixneuf; H. Junge;
M. Beller, Green Chemistry, 2015, 17, 193-198; (d) L. S.
Sharninghausen; B. Q. Mercado; R. H. Crabtree; N. Hazari,
Chemical Commun., 2015, 51, 16201-16204.(e) A. Azua; M.
Finn; H. Yi; A. Beatriz Dantas; A. Voutchkova-Kostal, ACS Sust.
Chem. Eng., 2017, 5, 3963-3972.
J. Albert; A. Jess; C. Kern; F. Pöhlmann; K. Glowienka; P.
Wasserscheid, ACS Sust. Chem. Eng., 2016, 4, 5078-5086;
K. Sordakis; C. Tang; L. K. Vogt; H. Junge; P. J. Dyson; M.
Beller; G. Laurenczy, Chem. Rev., 2017, 118,372-433.
(a) P. G. Jessop; T. Ikariya; R. Noyori, Nature, 1994, 368, 231-
233. (b) I. Jószai; F. Joó, J. Mol. Cat. A, 2004, 224, 87-91.
(a) P. Munshi; A. D. Main; J. C. Linehan; C.-C. C. Tai; P. G.
Jessop, J. Am. Chem. Soc., 2002, 124, 7963-7971; (b) G. A.
Filonenko; M. P. Conley; C. Copéret; M. Lutz; E. J. M. Hensen;
E. A. Pidko, ACS Catal., 2013, 3, 2522-2526; (c) K. Rohmann;
J. Kothe; M. W. Haenel; U. Englert; M. Hölscher; W. Leitner,
Angew. Chem. Int. Ed., 2016, 55, 8966-8969.
20 M. Finn; J. A. Ridenour; J. Heltzel; C. Cahill; A. Voutchkova-
Kostal, Organometallics, 2018, DOI: 10.1021/acs.organomet.
8b00081.
21 D. Jantke; M. Cokoja; A. Pothig; W. A. Herrmann; F. E. Kuhn,
Organometallics, 2013, 32, 741-744.
22 M. J. O'Neil, The Merck Index: An Encyclopedia of Chemicals,
Drugs, and Biologicals. 14th ed.; Rahway, New Jersey:, 2006.
23 Y. Y. Ohnishi; T. Matsunaga; Y. Nakao; H. Sato; S. Sakaki, J.
Am. Chem. Soc., 2005, 127, 4021-4032.
7
(a) J. F. Hull; Y. Himeda; W. H. Wang; B. Hashiguchi; R.
Periana; D. J. Szalda; J. T. Muckerman; E. Fujita, Nat Chem,
2012, 4, 383-388; (b) N. Onishi; S. Xu; Y. Manaka; Y. Suna;
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins