Organometallics
Article
products of butene were shown at different retention times in
The amounts of products, the conversion percentage of 1-
butene, and the selectivity of 2-butene or isobutene were
calculated according to the following equation:
ACKNOWLEDGMENTS
■
We acknowledge the support of this work by National Natural
Science Foundation of China (Grant No. 21676296) and
National Key Research and Development Plan (Grant No.
2
016YFC0303704).
Ai
Atotal
ni =
× 17.82 mmol
REFERENCES
■
(1)
(2)
(3)
(
1) (a) Al-Sharidi, S. H.; Sitepu, H.; AlYami, N. M. Application of
tungsten oxide (WO ) catalysts loaded with Ru and Pt metals to
remove MTBE from contaminated water: A case of laboratory-based
study. IJRET 2018, 6, 19−30. (b) Johnson, R.; Pankow, J.; Bender,
D.; Price, C.; Zogorski, J. To what extent will past releases
contaminate community water supply wells? Environ. Sci. Technol.
3
C% = A
+ Aisobutene
× 100%
2
‐butene
Atotal
Ai
2
000, 34, 210A−217A. (c) Einarson, M. D.; Mackay, D. M.
Si = A2
× 100%
+ Aisobutene
Predicting impacts of groundwater contamination. Environ. Sci.
Technol. 2001, 35, 66A−73A. (d) Jooste, S.; Thirion, C. An ecological
risk assessment for a south african acid mine drainage. Water Sci.
Technol. 1999, 39, 297−303.
‐butene
where A was the peak areas of 2-butene or isobutene; A was
the total peak areas of C4 olefins. n was the molar amount of
-butene or isobutene; C% was conversion percentage; S was
selectivity of 2-butene or isobutene. Calculation based on the
each fraction proportional areas to their the total peak areas of
C4 olefins in the gas chromatography.
Characterization of the Catalysts and Isomerization
Products. All reagents were purchased from commercial
sources and used as received. The powder X-ray diffraction
i
total
i
(
2) (a) Corma, A. Inorganic solid acids and their use in acid-
catalyzed hydrocarbon reactions. Chem. Rev. 1995, 95, 559−614.
b) Kramer, G. M.; McVicker, G. B. Hydride transfer and olefin
isomerization as tools To characterize liquid and solid acids. Acc.
Chem. Res. 1986, 19, 78−84. (c) Gibson, T. W.; Strassburger, P.
Sulfinic acid catalyzed isomerization of olefins. J. Org. Chem. 1976, 41,
2
i
(
7
91−793.
(3) Butler, A. C.; Nicolaides, C. P. Catalytic skeletal isomerization of
linear butenes to isobutene. Catal. Today 1993, 18, 443−471.
(4) (a) Yang, S.-M.; Lin, J.-Y.; Guo, D.-H.; Liaw, S.-G. 1-butene
isomerization over aluminophosphate molecular sieves and zeolites.
Appl. Catal., A 1999, 181, 113−122. (b) Wattanakit, C.; Nokbin, S.;
Boekfa, B.; Pantu, P.; Limtrakul, J. Skeletal isomerization of 1-butene
over ferrierite zeolite: A quantum chemical analysis of structures and
reaction mechanisms. J. Phys. Chem. C 2012, 116, 5654−5663.
(
2
PXRD) patterns were performed using a Rigaku D/MAX-
500 X-ray diffractometer at 40 kV and 40 mA (Cu Kα
radiation, λ = 1.5406 Å) in the range of 2θ = 5−50° using a
−
1
step scan mode with a step rate of 5° min . Thermogravi-
metric analyses (TGA) were carried out on a Mettler Toledo
TGA/SDTA851 analyzer under nitrogen flow with a heating
−1
rate of 5 K min in the range of 40−850 °C. Nitrogen
adsorption−desorption isotherms were measured on a Micro-
meretics model ASAP 2020 gas adsorption analyzer at 77 K.
Fourier transform infrared spectra (FT-IR) were measured
using KBr pellets with a DIGILAB FTS-3000 spectrometer in
the range of 4000−400 cm . GC/MS were taken with a
Bruker Scion TQ Gas chromatography tandem mass
spectrometer, hydrogen flame ionization detector (HFID),
and 30 m × 0.2 mm × 0.25 μm OV101 capillary column.
(
c) Pellet, R. J.; Casey, D. G.; Huang, H. M.; Kessler, R. V.; Kuhlman,
E. J.; Oyoung, C. L.; Sawicki, R. A.; Ugolini, R. J. Isomerization of n-
butene to isobutene by ferrierite and modified ferrierite catalysts. J.
Catal. 1995, 157, 423−435.
(5) (a) Nortier, P.; Fourre, P.; Mohammed Saad, A. B.; Saur, O.;
Lavalley, J. C. Effects of crystallinity and morphology on the surface
properties of alumina. Appl. Catal. 1990, 61, 141−160. (b) Houzvicka,
J.; Hansildaar, S.; Nienhuis, J. G.; Ponec, V. The role of deposits in
butene isomerisation. Appl. Catal., A 1999, 176, 83−89. (c) Gielgens,
L. H.; Veenstra, I. H. E.; Ponec, V.; Haanepen, M. J.; van Hooff, J. H.
C. Selective isomerisation of n-butene by crystalline aluminophos-
phates. Catal. Lett. 1995, 32, 195−203.
−
1
ASSOCIATED CONTENT
■
(
6) (a) Corma, A.; Orchilles, A. V. Current views on the mechanism
of catalytic cracking. Microporous Mesoporous Mater. 2000, 35, 21−30.
b) Blay, V.; Louis, B.; Miravalles, R.; Yokoi, T.; Peccatiello, K. A.;
*
S
Supporting Information
(
Clough, M.; Yilmaz, B. Engineering zeolites for catalytic cracking to
light olefins. ACS Catal. 2017, 7, 6542−6566.
PXRD patterns, FTIR, TGA curves, nitrogen adsorp-
tion−desorption isotherms, conversion percentages of 1-
butene and amounts of isomerization products, catalyst
ratios, GC/MS analysis, and schematic diagram of 1-
butene isomerization reactor (PDF)
(
7) (a) Guisnet, M.; Costa, L.; Ribeiro, F. R. Prevention of zeolite
deactivation by coking. J. Mol. Catal. A: Chem. 2009, 305, 69−83.
b) Guisnet, M.; Magnoux, P. Organic chemistry of coke formation.
Appl. Catal., A 2001, 212, 83−96.
8) (a) Wu, H. B.; Lou, X. W. Metal-organic frameworks and their
(
(
derived materials for electrochemical energy storage and conversion:
Promises and challenges. Sci. Adv. 2017, 3, eaap9252. (b) Sudik, A.
C.; Millward, A. R.; Ockwig, N. W.; Cote, A. P.; Kim, J.; Yaghi, O. M.
AUTHOR INFORMATION
■
Design, synthesis, structure, and gas (N , Ar, CO , CH , and H )
2 2 4 2
sorption properties of porous metal-organic tetrahedral and
*
heterocuboidal polyhedra. J. Am. Chem. Soc. 2005, 127, 7110−7118.
*
(
c) Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T.
ORCID
Luminescent metal−organic frameworks. Chem. Soc. Rev. 2009, 38,
1
330−1352. (d) Kreno, L. E.; Leong, K.; Farha, O. M.; Allendorf, M.;
Notes
Van Duyne, R. P.; Hupp, J. T. Metal−organic framework materials as
chemical sensors. Chem. Rev. 2012, 112, 1105−1125. (e) Wu, H.;
Gong, Q.; Olson, D. H.; Li, J. Commensurate adsorption of
hydrocarbons and alcohols in microporous metal organic frameworks.
The authors declare no competing financial interest.
F
Organometallics XXXX, XXX, XXX−XXX