2
00
R. López-Medina et al. / Catalysis Today 187 (2012) 195–200
Table 2
Propane conversion, selectivity to main products, and yield to acrylic acid obtained during the propane partial oxidation, reaction conditions: total flow 40 ml/min feed gas
− ◦
1
(
vol.%) C3/O2/H2O/He = 12.5/20.4/15.9/51.2, 200 mg, GHSV = 4800 h , T = 400 C.
Catalysts
Conversion
Acrylic Acid
Acrolein
Propylene
COx
Yield to acrylic acid
4
8
1
4
8
1
4
8
1
4
8
1
Mo5V4Nb1
Mo5V4Nb1
2Mo5V4Nb1
Mo6V3Nb1
Mo6V3Nb1
2Mo6V3Nb1
Mo5V4Nb0.5Te0.5
Mo5V4Nb0.5Te0.5
2Mo5V4Nb0.5Te0.5
Mo6V3Nb0.5Te0.5
Mo6V3Nb0.5Te0.5
2Mo6V3Nb0.5Te0.5
11.6
47.8
31.8
3.14
10.5
36.7
27.5
33.0
51.0
29.2
32.0
55.7
30.4
35.2
22.8
30
48.6
14.5
37.0
42.5
44.7
33.0
44.3
47.0
16.2
28.4
11.8
25.4
17.7
17.7
20.4
20.2
9.5
23.7
5.3
9.3
19.5
31.1
54.2
5.7
3.5
16.9
7.3
1
5.1
30.9
22.3
5.6
30.7
20.7
12.4
40.4
25.8
16.9
3.8
60.5
11.3
17.5
31.5
13.0
11.6
13.0
5.3
10.1
14.0
22.7
9.6
14.2
26.2
16.8
17.9
21.6
the case of Te-containing samples, especially those with higher
coverages, and, in this case, the best results are reported for the
catalysts with higher vanadium contents (8Mo V Nb0.5Te0.5 and
References
[
1] M.O. Guerrero-Pérez, J.L.G. Fierro, M.A. Ba n˜ ares, Top. Catal. 41 (2006) 43.
[
2] M.O. Guerrero-Pérez, J.L.G. Fierro, M.A. Vicente, M.A. Ba n˜ ares, J. Catal. 206
(2002) 339–348.
6
3
1
2Mo V Nb0.5Te0.5), suggesting that vanadium sites are involved
6 3
in the activation of the propane molecule. The catalysts without
tellurium contain essentially fully oxidized molybdenum species
and mixed phases with high oxidation states, although some oxy-
genates are detected in presence of propene and oxygen by FTIR
[3] M.O. Guerrero-Pérez, M.A. Ba n˜ ares, Chem. Commun. (2002) 1292.
[
[
[
[
5] M.O. Guerrero-Pérez, J.M. Rosas, R. López-Medina, M.A. Ba n˜ ares, J. Rodríguez-
Mirasol, T. Cordero, Catal. Commun. 12 (2011) 989–992.
6] R. López-Medina, J.L.G. Fierro, M.O. Guerrero-Pérez, M.A. Ba n˜ ares, Appl. Catal.
A: Gen. 375 (2010) 55.
(
Fig. 6A and C), the acrylic acid yields obtained are quite low, due
to a low propane conversion and a high selectivity to acrolein and
COx.
7] R. López-Medina, M.O. Guerrero-Pérez, M.A. Ba n˜ ares, Catal Today, (2012),
doi:10.1016/j.cattod.2011.11.018, in press.
[
[
8] D.J. Rosenberg, J.A. Anderson, Catal. Lett. 83 (2002) 59.
9] I.S. Pieta, M. Ishaq, R.P.K. Wells, J.A. Anderson, Appl. Catal. A 390 (2010) 127.
4
. Conclusions
[
[
10] Y. Zhao, W. Li, M. Zhang, K. Tao, Catal. Commun. 3 (2002) 239.
11] J.A Anderson, C. Fergusson, I. Rodríguez-Ramos, A. Guerrero-Ruiz, J. Catal. 192
(2000) 344.
12] M. Ziolek, I. Nowak, J.C. Lavalley, Catal. Lett. 45 (1997) 259.
13] H. Golinska, E. Rojas, R. López-Medina, V. Calvino-Casilda, M. Ziolek, M.A.
The presence of different oxygenates molecules have been iden-
[
[
tified by FTIR spectroscopy on the catalysts surface under propene
and oxygen atmosphere, indicative that these catalysts are able to
transform the adsorbed propene by inserting the oxygen atom into
its molecule, in order to yield the desired acrylic acid; although it
is not possible to make a definitive assignment of the intermediate
adsorbed oxygenated compounds.
The results of characterization (Raman and UV–Vis spectro-
scopies) have shown how the addition of tellurium to the catalysts
formulation induces the formation of mixed phases containing Te,
such as M1, identified by Raman spectroscopy and also the pres-
ence of reduced Mo species identified by UV–Vis, this changes in
Banares, M.O. Guerrero-Pérez, Appl. Catal. A 380 (2010) 95.
[14] M. Trejda, J. Kujawa, M. Ziolek, J. Mrowiec-Białon, Catal. Today 139 (2008) 196.
˜
[
[
[
15] J. Florek-Milewska, P. Decyk, M. Ziolek, Appl. Catal. 393 (2011) 215.
16] M.A. Ba n˜ ares, I.E. Wachs, J. Raman Spectrosc. 33 (2002) 359.
17] B. Solsona, M.I. Vázquez, F. Ivars, A. Dejoz, P. Concepción, J.M. López Nieto, J.
Catal. 252 (2007) 271.
[
[
[
[
18] P. Concepcion, S. Hernandez, J.M. López Nieto, Appl. Catal. A: Gen. 391 (2011)
92.
19] P. Botella, E. García-González, J.M. López Nieto, J.M. González-Calbet, Solid State
Sci. 7 (2005) 507.
20] M.O. Guerrero-Pérez, M.C. Herrera, I. Malpartida, M.A. Larrubia, L.J. Alemany,
M.A. Ba n˜ ares, Catal. Today 126 (2007) 177–280.
21] J.M. Oliver, J.M. López Nieto, P. Botella, Catal. Today 96 (2004) 241–249.
the structure inhibit the formation of MoO . In the absence of such
[22] P. Botella, P. Concepción, J.M. López Nieto, Y. Moreno, Catal. Today 99 (2005)
1–57.
3
5
oxidized compounds, the catalysts with Te present a lower surface
acidity, as have been demonstrated with the pyridine adsorption
experiments. The FTIR studies performed for the propene adsorp-
tion and oxygen admission indicated that the IR bands are more
intense in the case of catalysts without Te, which are those that
presented a higher amount of acid sites. It confirms that the inter-
mediates are held on the surface of catalysts strongly in the absence
of Te, and this behavior decrease the activity of the samples without
Te.
[
23] P. Botella, E. García González, B. Solsona, E. Rodríguez Castellón, J.M. González
Calbet, J.M. López Nieto, J. Catal. 265 (2009) 43–53.
[24] R. López-Medina, H. Golinska, M. Ziolek, M.O. Guerrero-Pérez, M.A. Ba n˜ ares,
Catal. Today 158 (2010) 139–145.
[
[
[
[
25] P. Botella, A. Dejoz, J.M. López Nieto, P. Concepción, M.I. Vázquez, Appl. Catal.
A 298 (2006) 16–23.
26] D. Hong, V.P. Vislovskiy, Y. Hwang, S.H. Jhung, J.S. Chang, Catal. Today 131 (2008)
140.
27] G. Catana, R. Ramachandra Rao, B.M. Weckhuysen, Pascal Van Der Voort, E.
Vansant, R.A. Schoonheydt, J. Phys. Chem. B 102 (1998) 8005.
28] E.P. Parry, J. Catal. 2 (1963) 371.
Thus the combination of the application of different spectro-
scopies has led to the characterization of the surface species of
catalysts used in this study and also has permitted to analyze
the capability of the adsorption of the reaction intermediates. The
strength of such adsorption can be related to the catalytic behavior.
[29] B. Chakraborty, B. Viswanathan, Catal. Today 49 (1999) 253.
[30] S. Khabtou, T. Chevreau, J.C. Lavalley, Micropor. Mater. 3 (1994) 133.
[31] M. Baca, A. Pigamo, J.L. Dubois, J.M.M. Millet, Catal. Commun. 6 (2005) 215.
[32] G. Busca, Catal. Today 41 (1998) 191–206.
[33] R. López-Medina, J.L.G. Fierro, M.O. Guerrero-Pérez, M.A. Ba n˜ ares, Appl. Catal.
A: Gen. 406 (2011) 34–42.
[
34] V. Ermini, E. Finocchio, S. Sechi, G. Busca, S. Rossini, Appl. Catal. A 190 (2000)
57.
[35] P. Concepción, P. Botella, J.M. López Nieto, Appl. Catal. A 278 (2004) 45.
1
Acknowledgements
[
36] J.M. López Nieto, B. Solsona, P. Concepción, F. Ivars, A. Dejoz, M.I. Vázquez, Catal.
Today 157 (2010) 291.
The Ministry of Science and Innovation (Spain) funded this study
under project CTQ2008-04261/PPQ. R. López-Medina thanks AECID
[
37] V. Sanchez Escribano, G. Busca, V. Lorenzelli, J. Phys. Chem. 94 (1990) 8939.
[38] E. Heracleous, A.A. Lemonidou, J.A. Lercher, Appl. Catal. 264 (2004) 73.
[
39] A.A. Davydov, Molecular Spectroscopy of Oxide Catalyst Surfaces, John Wiley
Sons, 2003.
40] B. Solsona, F. Ivars, P. Concepción, J.M. López Nieto, J. Catal. 250 (2007) 128.
(
Spain) and ICyTDF (México) for his PhD program fellowship and
&
COST Action D36 for the financial support (STSM) during his stay
at AMU (Poland). The authors express their thanks to Olaf Torno
[
[41] M.O. Guerrero-Pérez, M.A. Pe n˜ a, J.L.G. Fierro, M.A. Ba n˜ ares, Ind. Eng. Chem. Res.
45 (2006) 4537–4543.
(
Sasol Germany GmbH) for providing alumina support.