Mendeleev Commun., 2014, 24, 167–169
1
00
90
80
Table 2 Glycerol dehydration (5 h).
Acrolein
selectivity Ref.
×
×
×
×
Conver-
sion (%)
×
Entry Catalyst
T/°C
(
%)
×
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
MCM-41
300 10
30
28
79
74
78
77
80
69
73
77
76
78
76
81
69
77
77
71
95
94
This worka
This worka
This worka
This worka
This worka
This worka
This worka
This worka
This worka
This worka
This worka
This worka
This worka
This worka
This worka
This worka
This worka
8
7
0
ZrMCM-41
300 66
350 70
35%HPW/MCM-41
60
50
Pt/30%HPW/MCM-41 300 68
350 76
5
10
20
30
40
50
Pt/35%HPW/MCM-41 300 76
350 82
Time/h
400 80
Figure 5 Time dependence of glycerol dehydration at 350°C over (×) Pt/
35%HPW/ZrMCM-41, ( ) Pt/35%HPW/MCM-41 and ( ) 35%HPW/
MCM-41.
Pt/40%HPW/MCM-41 300 79
350 83
1
1
1
1
1
1
1
1
1
1
2
Pt/30%HPW/ZrMCM-41 300 70
350 80
The long term stability of the catalysts was tested with
Pt/35%HPW/ZrMCM-41 and Pt/35%HPW/MCM-41 compared
to the Pt-free catalyst at 350°C (Figure 5). Both Pt loaded
catalysts retain conversion until 40 h; at 50 h, the glycerol conver-
sion decreased to 78–80%, while the Pt-free catalyst demonstrated
a drastic decrease in conversion (60% in 20 h). This might be due
to coke deposition (7.5%). A lower coke deposition was found
for the Pt loaded catalysts (£1.0–1.5%). The Pt reduces catalyst
coking by hydrogenating coke precursors.
Pt/35%HPW/ZrMCM-41 300 79
350 87
400 76
Pt/40%HPW/ZrMCM-41 300 80
350 86
20%HPW/SiO2b
300 67
275 60
275 72
c
20%HPW/SiO (in N )
12
2
2
2%Pd/20%HPW/SiO
12
2
(
in H2)c
ZrMCM-41 (Si/Zr = 10)d 325 73
24
13
References
2
1
1
K. Weissermel and H. J. Arpe, Industrial Organic Chemistry, 3rd edn.,
Wiley, 1997.
Y. T. Kim, K. D. Jung and E. D. Park, Appl. Catal. A, 2011, 393, 275.
3 L. G. Possato, R. N. Diniz, T. Garetto, S. H. Pulcinelli, C. V. Santilli and
L. Martins, J. Catal., 2013, 300, 102.
B. Katryniok, S. Paul, M. Capron and F. Dumeignil, ChemSusChem,
009, 2, 719.
I. Shen, H. Yin, A. Wang, Y. Feng, Y. Shen, Z. Wu and T. Jiang, Chem.
Eng. J., 2012, 180, 277.
6 L. Ning, Y. Ding, W. Chen, L. Gong and Q. Xin, Chin. J. Catal., 2008,
a
Catalyst 0.4 g, 10% glycerol feed at 0.14 ml min–1 flow rate, 15 ml min N .
Catalyst 0.3 g, 10% glycerol feed at 0.028 ml min flow rate, 30 ml min
–1
2
b
–1
–1
–1
–1
2
c
–1
N . Catalyst 0.3 g, 10% glycerol feed at 0.14 ml min flow rate, 15 ml min
2
d
H or N . Catalyst (2.7 nm pore size) 0.3 g, 10% glycerol feed at 0.05 ml min
2
2
–
1
flow rate, 30 ml min N .
2
4
5
2
at a terminal hydroxy group of glycerol, hydroxyacetone 4 is
produced through dehydration and deprotonation accompanied by
tautomerism. Other by-products include acetaldehyde, propanal
and trace unidentified compounds (each less than 4%).
MCM-41 and ZrMCM-41 produce significantly low glycerol
conversion and selectivity for acrolein (Table 2, entries 1, 2). The
supported catalysts provide much higher glycerol conversion and
selectivity for acrolein. The 35%HPW/MCM-41 shows 70%
conversion with 79% selectivity. When loaded with Pt, under
the same reaction condition, a higher conversion (82%) was
achieved (entry 3 vs. 7). This reveals the higher catalyst stability
attributed to the role of Pt in reducing coke formation.
21
2
9, 212.
7
8
9
S. H. Chai, H. P. Wang,Y. Liang and B. Xu, Appl. Catal. A, 2009, 353, 213.
H. Atia, U. Armbruster and A. Martin, J. Catal., 2008, 258, 71.
E. Tsukuda, S. Sato, R. Takahashi and T. Sodesawa, Catal. Commun.,
2
007, 8, 1349.
10 H. Atia, U. Armbruster and A. Martin, Appl. Catal. A, 2011, 393, 331.
11 J. L. Dubois, C. Duquenne and W. Holderich, FR Patent 2005-1499-
882052, 2006.
2 A. Alhanash, E. F. Kozhevnikova and I. V. Kozhevnikov, Appl. Catal. A,
010, 378, 11.
3 C. Garcia-Sancho, R. Moreno-Tost, J. Merida-Robles, J. Santamaria-
Gonzalez, A. Jimenez-Lopez and P. Maireles-Torres, Appl. Catal. A,
2012, 433-434, 179.
2
1
1
2
At the same temperature, the increasing loading of HPW on
both supports leads to an increase in glycerol conversion (cf.
entries 4–10 and 11–17). It was reported that the formation of
14 B. Katryniok, S. Paul, V. Belliore-Baca, P. Rey and F. Dumeignil, Green
Chem., 2010, 12, 2079.
15 P. Lauriol-Garbay, J. M. M. Milleta, S. Loridanta, V. Bellière-Baca and
P. Rey, J. Catal., 2011, 280, 68.
6 W. Trakarnpruk, Mendeleev Commun., 2013, 23, 168.
7 W. Trakarnpruk, Mendeleev Commun., 2013, 23, 46.
18 X.Yang, J.A. Wang, L. Chen, S. P. Ramirez Sebastian andA. M. Robledo,
Catal. Commun., 2012, 28, 202.
9 J. A. Anderson, C. Fergusson, I. Rodríguez-Ramos andA. Guerrero-Ruiz,
J. Catal., 2000, 192, 344.
0 L. F. Chen, J. A. Wang, L. Noreña, J. Aguilar, J. Navarrete, J. A. Montoya,
P. Salas and P. del Angel, J. Solid State Chem., 2007, 180, 2958.
1 M. J. Antal, W. S. L. Mok, J. C. Roy and A. T. Raissi, J. Anal. Appl.
Pyrolysis, 1985, 8, 291.
acrolein is related to Brønsted acid sites, while Lewis acid sites
show higher selectivity for hydroxyacetone.14 Increasing HPW
loading results in a higher B/L ratio (Table 1); therefore, the
selectivity for acrolein increased. Among the test catalysts,
Pt/35%HPW/ZrMCM-41 shows the best performance (82%
conversion with 80% selectivity, entry 7). As for other by-products
over the Pt-loaded catalysts, the selectivity for hydroxyacetone is
1
1
1
2
2
1
1–18%, along with acetaldehyde (<8%) and propanal (<5%).
There is a difference in the selectivity for hydroxyacetone between
Pt/35%HPW/MCM-41 and 35%HPW/MCM-41 (16% vs. 7%),
similarly to a result reported for Pt/SBA-15 and SBA-15.
2
2
Selectivities for hydroxyacetone and acetaldehyde from the bare
support are almost equal.
22 A. S. de Oliveira, S. J. S. Vasconcelos, J. R. de Sousa, F. F. de Sousa,
J. M. Filho and A. C. Oliveira, Chem. Eng. J., 2011, 168, 765.
The glycerol conversion increased with the reaction tempera-
ture (300–400°C). However, the selectivity for acrolein decreased
at 400°C (entries 8 and 15) due to the formation of acrolein
oligomers or the cracking of acrolein. The experimental results
showed that both the reaction temperature and the acid loading
affected the conversion of glycerol and the selectivity for acrolein.
Received: 13th May 2013; Com. 13/4119
–
169 –