174
W. Su et al. / Journal of Catalysis 268 (2009) 165–174
size, on which KAc modification largely increases the rates of PO
formation and acrolein formation especially for PO formation.
The rate of PO formation is enhanced by about one order after
KAc modification. These suggest that the (KAc)–Cu/SiO2 catalyst
with 2.9 nm CuO particle size is a very special sample and is differ-
ent from other Cu/SiO2 catalysts. From the above discussion, there
is an interaction between Cu species and K+, which is favorable for
PO formation [26]. This interaction may be weaker and weaker
with increasing CuO particle size, especially when the size of
CuO particles exceeds 6 nm. Thus, in the case of the (KAc)–Cu/
SiO2 catalyst (2.9 nm), the strong interaction between K+ and Cu
species may further stabilize the electrophilic oxygen species
[28], which switches the reaction pathway from the formation of
acrolein and COx to that of PO and leads to high PO selectivity.
References
[1] T.A. Nijhuis, M. Makkee, J.A. Moulijn, B.M. Weckhuysen, Ind. Eng. Chem. Res. 45
(2006) 3447.
[2] M.G. Clerici, G. Bellussi, U. Romano, J. Catal. 129 (1991) 159.
[3] Z.W. Xi, N. Zhou, Y. Sun, K.L. Li, Science 292 (2001) 1139.
[4] T. Hayashi, K. Tanaka, M. Haruta, J. Catal. 178 (1998) 566.
[5] A.K. Sinha, S. Seelan, S. Tsubota, M. Haruta, Angew. Chem. Int. Ed. 43 (2004)
1546.
[6] E. Ananieva, A. Reitzmann, Chem. Eng. Sci. 59 (2004) 5509.
[7] Y. Wang, W. Yang, L.J. Yang, X.X. Wang, Q.H. Zhang, Catal. Today 117 (2006)
156.
[8] X.X. Wang, Q.H. Zhang, Q. Guo, Y.C. Lou, L.J. Yang, Y. Wang, Chem. Commun.
(2004) 1396.
[9] J.R. Monnier, Appl. Catal. A 221 (2001) 73.
[10] R.P. Wang, X.W. Guo, X.S. Wang, J.Q. Hao, G. Li, J.H. Xiu, Appl. Catal. A 261
(2004) 7.
[11] M.F. Luo, J.Q. Lu, C. Li, Catal. Lett. 86 (2003) 43.
[12] G.J. Jin, G.Z. Lu, Y.L. Guo, Y. Guo, J.S. Wang, X.H. Liu, Catal. Lett. 87 (2003)
249.
4. Conclusions
[13] G.J. Jin, G.Z. Lu, Y.L. Guo, Y. Guo, J.S. Wang, X.H. Liu, Catal. Today 93 (2004)
173.
Both Cu0 and Cu+ species in Cu/SiO2 catalyst show C3H6 epoxi-
dation activity. Cu2+ species in Cu/SiO2 hardly produces PO, but
mainly produces acrolein and COx. IR studies indicate that C3H6
is strongly bonded to Cu0 and Cu+ sites since most adsorbed CO
[14] R.P. Wang, X.W. Guo, X.S. Wang, J.Q. Hao, Catal. Today 93 (2004) 217.
[15] J.Q. Lu, J.J. Bravo-Suarez, M. Haruta, S.T. Oyama, Appl. Catal. A 302 (2006)
283.
[16] J.Q. Lu, M.F. Luo, H. Lei, C. Li, Appl. Catal. A 237 (2002) 11.
[17] J.Q. Lu, M.F. Luo, H. Lei, X.H. Bao, C. Li, J. Catal. 211 (2002) 552.
[18] J.Q. Lu, M.F. Luo, C. Li, Chin. J. Catal. 25 (2004) 5.
[19] M. Akimoto, K. Ichikawa, E. Echigoya, J. Catal. 76 (1982) 333.
[20] R.L. Cropley, F.J. Williams, O.P.H. Vaughan, A.J. Urquhart, M.S. Tikhov, R.M.
Lambert, Surf. Sci. 578 (2005) L85.
can be replaced by adsorbed C3H6.
Cu0 results in a red shift of mCO with respect to CO adsorbed on
Cu+ or Cu0 ‘‘solo”. Moreover, donation of C3H6 to Cu0 is stronger
than that to Cu+. -Back donation of d electrons of Cu+ ions to
p
donation of C3H6 to Cu+ or
p
[21] R.L. Cropley, F.J. Williams, A.J. Urquhart, O.P.H. Vaughan, M.S. Tikhov, R.M.
Lambert, J. Am. Chem. Soc. 127 (2005) 6069.
p
p*
antibonding orbitals of C3H6 also takes place, which results in a dis-
tinct C@C bond weakening. C3H6 is weakly adsorbed on Cu2+, how-
ever, the charge transfer between C3H6 and Cu2+ is not obvious.
KAc is found to be an excellent modifier for PO formation, while
ClÀ modification only slightly enhances PO selectivity. The modifi-
cation by K+ can switch the main reaction route from allylic oxida-
tion to epoxidation. The small CuO particle size is most favorable
for PO formation especially when Cu/SiO2 sample is modified by
KAc, and large CuO particle size tends to produce acrolein and
COx. The concentration of Cu0 and Cu+ species is much higher in
small CuO particles. Thus, the isolated Cu species and small CuOx
clusters modified by KAc may be the active sites for C3H6 epoxida-
tion reaction using molecular oxygen.
[22] R.M. Lambert, F.J. Williams, R.L. Cropley, A. Palermo, J. Mol. Catal. A 228 (2005)
27.
[23] D. Torres, N. Lopez, F. Illas, R.M. Lambert, Angew. Chem. Int. Ed. 46 (2007)
2055.
[24] J.R. Monnier, G.W. Hartley, J. Catal. 203 (2001) 253.
[25] O.P.H. Vaughan, G. Kyriakou, N. Macleod, M. Tikhov, R.M. Lambert, J. Catal. 236
(2005) 401.
[26] H. Chu, L. Yang, Q.H. Zhang, Y. Wang, J. Catal. 241 (2006) 225.
[27] W.M. Zhu, Q.H. Zhang, Y. Wang, J. Phys. Chem. C 112 (2008) 7731.
[28] Y. Wang, H. Chu, W.M. Zhu, Q.H. Zhang, Catal. Today 131 (2008) 496.
[29] C.J.G. Vandergrift, P.A. Elberse, A. Mulder, J.W. Geus, Appl. Catal. 59 (1990)
275.
[30] A.R. Balkenende, C.J.G. Vandergrift, E.A. Meulenkamp, J.W. Geus, Appl. Surf. Sci.
68 (1993) 161.
[31] J. Datka, E. Kukulska-Zajac, J. Phys. Chem. B 108 (2004) 17760.
[32] S. Bordiga, R. Buzzoni, F. Geobaldo, C. Lamberti, E. Giamello, A. Zecchina, G.
Leofanti, G. Petrini, G. Tozzola, G. Vlaic, J. Catal. 158 (1996) 486.
[33] G. Cordoba, R. Arroyo, J.L.G. Fierro, M. Viniegra, J. Solid State Chem. 123 (1996)
93.
[34] F. Boccuzzi, S. Coluccia, G. Martra, N. Ravasio, J. Catal. 184 (1999) 316.
[35] S. Velu, K. Suzuki, M. Okazaki, M.P. Kapoor, T. Osaki, F. Ohashi, J. Catal. 194
(2000) 373.
[36] M. Haruta, Cattech 6 (2002) 102.
[37] J.M. Coxon, R. Maclagan, A. Rauk, A.J. Thorpe, D. Whalen, J. Am. Chem. Soc. 119
(1997) 4712.
[38] E. Kukulska-Zajac, N. Kumar, T. Salmi, D.Y. Murzin, J. Datka, Catal. Today 100
(2005) 407.
Acknowledgments
This work was financially supported by the National Basic Re-
search Program of China (Grants 2009CB623507), the National
Natural Science Foundation of China (NSFC, Grants 20590363),
and Program Strategic Scientific Alliances between China and the
Netherlands (Grants 2008DFB50130).
[39] R. Burch, J.P. Breen, F.C. Meunier, Appl. Catal. B 39 (2002) 283.
[40] R. Burch, Phys. Chem. Chem. Phys. 8 (2006) 5483.
[41] K.I. Hadjiivanov, G.N. Vayssilov, Adv. Catal. 47 (2002) 307.
[42] K. Hadjiivanov, H. Knozinger, Phys. Chem. Chem. Phys. 3 (2001) 1132.
[43] J. Datka, E. Kukulska-Zajac, W. Kobyzewa, Catal. Today 114 (2006) 169.
[44] E. Broclawik, P. Rejmak, P. Kozyrac, J. Datka, Catal. Today 114 (2006) 162.
Appendix A. Supplementary material
Supplementary data associated with this article can be found, in