2,3-DMB. A new mechanistic pathway is proposed based on
two key hydrido-tungsta-carbenes 4 and 6a which accounts for
the formation and the selectivities of all the products observed.
Notes and references
1 A. S. Goldman, A. H. Roy, Z. Huang, R. Ahuja, W. Schinski and
M. Brookhart, Science, 2006, 312, 257–261.
2 V. Vidal, A. Theolier, J. Thivolle-Cazat and J. M. Basset, Science,
1997, 276, 99–102.
3 C.-Y. Chen, D. J. O’Rear and S. R. Brundage, Chevron USA Inc,
USA, WO 2002000578, 2002.
4 M. Taoufik, E. Schwab, M. Schultz, D. Vanoppen, M. Walter,
J. Thivolle-Cazat and J. M. Basset, Chem. Commun., 2004,
1434–1435.
Scheme 4 (a) and (c) classical and (b) unusual mechanistic pathways
in the metathesis of 2-methylpropane and 2-methylpropene (M = W).
5 J. M. Basset, C. Coperet, L. Lefort, B. M. Maunders, O. Maury,
E. Le Roux, G. Saggio, S. Soignier, D. Soulivong, G. J. Sunley,
M. Taoufik and J. Thivolle-Cazat, J. Am. Chem. Soc., 2005, 127,
8604–8605.
6 E. Le Roux, M. Taoufik, C. Coperet, A. de Mallmann, J. Thivolle-
Cazat, J.-M. Basset, B. M. Maunders and G. J. Sunley, Angew.
Chem., Int. Ed., 2005, 44, 6755–6758.
7 E. Le Roux, M. Taoufik, A. Baudouin, C. Coperet, J. Thivolle-
Cazat, J.-M. Basset, B. M. Maunders and G. J. Sunley, Adv. Synth.
Catal., 2007, 349, 231–237.
8 M. Taoufik, E. Le Roux, J. Thivolle-Cazat, C. Coperet,
J.-M. Basset, B. Maunders and G. J. Sunley, Top. Catal., 2006,
40, 65–70.
9 M. Taoufik, E. Le Roux, J. Thivolle-Cazat and J. M. Basset,
Angew. Chem., Int. Ed., 2007, 46, 7202–7205.
10 J.-M. Basset, F. Stoffelbach, M. Taoufik and J. Thivolle-Cazat, BP
Oil International Limited, UK, WO 2008001040, 2008.
11 N. Nikolaou, C. E. Papadopoulos, I. A. Gaglias and
K. G. Pitarakis, Fuel, 2004, 83, 517–523.
12 K. J. Ivin and I. C. Mol, Olefin Metathesis and
Metathesis Polymerization, Academic Press, 1996.
13 T. Kawai, H. Kudo, T. Suzuki and T. Iyoda, J. Mol. Catal. A.,
2000, 158, 533–540.
14 T. Yamamura and S. Nakatomi, J. Catal., 1975, 37, 142–147.
´
15 J. L. Herisson and Y. Chauvin, Markromol. Chem., 1970, 141, 161.
also be displaced via s-bond metathesis, by the incoming
2-methylpropane present in excess. The excess of 2-methylbutane
(5%) over 2,4-dimethylpentane (0.5%) can be understood on
the basis of the stability of the key metallacyclobutanes or of
the facility of their formation (5a 4 5b), which both depends
on the interaction between the substituents in the [1,2] or
[1,3]-positions as proposed for olefin metathesis.16
Alternatively, although unfavorably, the hydrido-tungsta-
carbenes 6a and 6b could undergo the migration of the hydride
onto the carbene ligands involving the formation of
WIV(–CH(CH3)2) 8a and WIV(–CH3) 8b but also a concomitant
disfavored reduction of WVI to WIV 18
The resulting alkyl
.
groups could again be displaced by H2 or the incoming alkane
reactant via s-bond metathesis giving propane and methane in
minor amounts (Scheme 4a and 1c). Finally, it should be
mentioned here that 2,3-DMB, which is of interest for its high
octane number (RON = 104),11 is currently obtained by
paraffin isomerisation with the use of two major commercial
bifunctional catalysts: Pt on highly chlorinated alumina, and
Pt on mordenite; however, the selectivity remains low around
8% and both catalysts are deactivated by coke formation.19
In conclusion, tungsten hydride supported on alumina
W(H)3/Al2O3–500 catalyzes both 2-methylpropene and
2-methylpropane metathesis with a common core mechanistic
scheme affording the main formation of 2,3-DMB= and
16 J. L. Bilhou, J. M. Basset, R. Mutin and W. F. Graydon, J. Am.
Chem. Soc., 1977, 99, 4083–4090.
17 J. M. Basset, J. Thivolle-Cazat, M. Taoufik, E. Le Roux and
C. Coperet, CPE Lyon FCR, France, WO 2006013263, 2006.
18 S. Y. S. Wang, D. D. VanderLende, K. A. Abboud and
J. M. Boncella, Organometallics, 1998, 17, 2628–2635.
19 M. Stoecker, Microporous Mesoporous Mater., 2005, 82, 257–292.
ꢁc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 2523–2525 | 2525