8
4
VAN DE RUNSTRAAT ET AL.
isomerization is much higher than the one in the superacid
solution (approximately 30 kJ/mol) (30). This is due to the
fact that in reactions catalyzed by acidic zeolites alkoxy
species are the reactive intermediates. The covalent C–O
bond between carbon chain and zeolite lattice must be (par-
tially) dissociated before isomerization.
8. Van Santen, R. A., and Niemantsverdriet, J. W., “Chemical Kinetics
and Catalysis,” p. 49. Plenum Press, New York, 1995.
9. Stach, H., Lohse, U., Thamm, H., and Schirmer, W., Zeolites 6, 74
(
1986).
1
1
0. Lerchert, H., and Schweitzer, W., in “Proceedings of the International
Conference on Zeolites, Reno” (D. Olson and A. Bisio, Eds.), p. 210.
Guildford-Butterworth, 1983.
1. “API 44 Tables,” American Petroleum Institute Research Project,
Vols. V and VI, Thermodynamic Research Center, Texas A&M Uni-
versity, 1968.
5
. CONCLUSIONS
1
1
1
2. Kazansky, V. B., Frash, M. V., and Van Santen, R. A., Appl. Catal. 146,
225 (1996).
Differences in activity of different zeolites are due not
only to differences in intrinsic acid strength but also to
a combination of adsorption and diffusion effects. We
demonstrated this using four zeolites that were intrinsically
3. Van den Broek, A. C. M., Van Grondelle, J., and Van Santen, R. A.,
J. Catal. 167, 417 (1997).
4. J a¨ nchen, J., Van Wolput, J. H. M. C., Van de Ven, L. J. M., De Haan,
J. W., and Van Santen, R. A., Catal. Lett. 39, 147 (1996).
equally acidic. Their activities per acid site could be there- 15. Bates, S. P., and Van Santen, R. A. [Unpublished results]
1
1
1
6. Meier, W. M., Olson, D. H., and Baerlocher, Ch., “Atlas of Zeolite
Structure Types.” Elsevier, Amsterdam, 1996.
7. J a¨ nchen, J., Stach, H., Uytterhoeven, L., and Mortier, W. J., J. Phys.
Chem. 100, 12489 (1996).
fore be directly compared. A higher adsorption enthalpy
led to a lower apparent activation energy and, thus, a higher
activity per acid site. On the zeolites under investigation the
activation energy of the elementary isomerization reaction
8. Eder, F. [Personal communication]
with respect to a n-alkoxy intermediate was the same for 19. Madon, R. J., O’Conell, J. P., and Boudart, M., AIChE 24, 904
(
1978).
all structures and amounted to approximately 125 kJ/mol.
This value is much higher than in the superacid solution be-
cause of the energy needed to break or lengthen the bond
between the alkoxy carbon and zeolite lattice oxygen.
2
2
0. This conclusion is supported by: Stockenhuber, M., Eder, F., and
Lercher, J. A., Stud. Surf. Sci. Catal. 97, 495 (1995).
1. Van der Pol, A. J. H. P., Verduyn, A. J., and Van Hooff, J. H. C., Appl.
Catal. 92, 113 (1992).
ZSM-22 showed pore-mouth catalysis due to its one- 22. Haag, W. O., Lago, R. M., and Weisz, P. B., Faraday Disc. Chem. Soc.
7
2, 317 (1982).
dimensional pore system with relatively small pores. This
zeolite was therefore relatively inactive. Both ZSM-5 and
ZSM-22showed shape selectivitywhile no dimethylbutanes
were formed and the 2-MP/3-MP ratio was not at equilib-
rium. The latter was at equilibrium on both large-pore zeo-
lites, mordenite and �. The reaction on �-zeolite may have
become diffusion limited at higher temperatures due to its
high activity per gram. The mordenite data indicate the pos-
sibility of single-file diffusion and a limited accessibility of
the acid sites.
2
3. Meier, W. M., Olson, D. H., and Baerlocher, Ch., “Atlas of Zeolite
Structure Types,” Elsevier, Amsterdam/New York, 1996.
4. Sachtler, W. M. H., and Zhang, Z., Adv. Catal. 39, 129 (1993).
5. Gianetto, G., Alvares, F., Ribeiro, F. R., P e´ rot, G., and Guisnet, M.,
in “Guidelines for Mastering the Properties of Molecular Sieves”
2
2
(
D. Barthomeuf, E. G. Derouane, and W. H o¨ lderich, Eds.), NATO
ASI Series B, Vol. 221, p. 355. Plenum Press, New York, 1990.
6. Carvill, B. T., Lerner, B. A., Adelman, B. J., Tomczak, D. C., and
Sachtler, W. M. H., J. Catal. 144, 1 (1993).
7. Jaeger, N. I., Jaeger, A. L., and Schulz-Ekloff, G., J. Chem. Soc. Faraday
Trans. 87, 1251 (1991).
2
2
2
8. Kazansky, V. B., Frash, M. V., and Van Santen, R. A., Appl. Catal. 146,
225 (1996).
ACKNOWLEDGMENT
29. Van de Runstraat, A., Stobbelaar, P. J., Van Grondelle, J., Anderson,
B. G., Van IJzendoorn, L. J., and Van Santen, R. A., Stud. Surf. Sci.
Catal. 105, 1253 (1996).
30. Brouwer, D. M., in “Chemistry and Chemical Engineering of Catalytic
Processes” (G. C. A. Schuit and R. Prins, Eds.), p. 137. Noordhoff,
Alphenaanden Rijn, Rockville, MD, 1980.
The work described in this paper was funded by the Dutch Organiza-
tion for Scientific Research (NWO) through its Foundation for Chemistry
(
SON).
31. Languasco, J. M., Cunningham, R. E., and Calvelo, A., Chem. Eng.
Sci. 27, 1459 (1972).
REFERENCES
3
2. (a) Blomsma, E., Martens, J. A., and Jacobs, P. A., J. Catal. 155, 141
(1995); (b) Blomsma, E., Martens, J. A., and Jacobs, P. A., J. Catal. 159,
323 (1996); (c) Blomsma, E., Martens, J. A., and Jacobs, P. A., Stud.
Surf. Sci. Catal. 105, 909 (1996).
1
. Weisz, P. B., in “Advances in Catalysis and Related Subjects, Vol. 13”
D. D. Eley, P. W. Selwood, and P. B. Weisz, Eds.), p. 157. Academic
Press, London, 1963.
(
2
. Kazansky, V. B., in “Acidity and Basicity of Solids, Theory, Assess- 33. Martens, J. A., Parton, R., Uytterhoeven, L., Jacobs, P. A., and
ment and Utility” (J. Fraissard and L. Petrakis, Eds.), p. 335. Kluwer
Academic, Dordrecht, 1994.
. Kazansky, V. B., and Senchenya, I. N., J. Catal. 119, 108 (1989).
. Ribeiro, F., Marcilly, C., and Guisnet, M., J. Catal. 78, 267 (1982).
. Steijns, M., and Froment, G. F., Ind. Eng. Chem. Prod. Res. Dev. 4, 660
Froment, G. F., Appl. Catal. 76, 95 (1991).
34. Martens, J. A., Souverijns, W., Verrelst, W., Parton, R., Froment, G. F.,
and Jacobs, P. A., Angew. Chemie 107, 2726 (1995).
35. (a) Li, C., and Zhu, Z., Fuel Sci. Technol. 9, 1103 (1991); (b) Marin,
G. B., and Froment, G. F., Chem. Eng. Sci. 37, 759 (1982).
36. Allain, J. F., Magnoux, P., Schulz, Ph., and Guisnet, M., in “Proceed-
ings of the DGMK-Conference: Catalysis on Solid Acid and Bases”
(J. Weitkamp and B. L u¨ cke, Eds.), p. 219. German Society for
Petroleum and Coal Science and Technology, 1996.
3
4
5
(
1981).
6
7
. Froment, G. F., Catalysis Today 1, 455 (1987).
. Van de Runstraat, A., Van Grondelle, J., and Van Santen, R. A., Ind.
Eng. Chem. Res., in press.