Chemistry - An Asian Journal
10.1002/asia.201600828
COMMUNICATION
[10] a) D. Ravelli, M. Fagnoni, A. Albini, Chem. Soc. Rev. 2013, 42, 97;
Quantum yield determination. A standard actinometer (potassium
ferrioxalate) was used for the quantum yield determination of the
photooxygenation of cyclohexane with DDQ. Typically, a square quartz
cuvette (10 mm i.d.), which contained an O2-saturated cyclohexane
solution (3.0 cm3) of DDQ (2.0 mM) was irradiated with monochromatized
b) N. Hoffmann, J. Photochem. Photobiol. C, Photochem. Rev. 2008
9, 43.
,
[11] a) S. Fukuzumi, K. Ohkubo, Chem. Sci. 2013, 4, 561; b) S.
Fukuzumi, K. Ohkubo, Org. Biomol. Chem. 2014, 12, 6059; c) S.
Fukuzumi, K. Ohkubo, T. Suenobu, Acc. Chem. Res. 2014, 47,
1455; d) K. Ohkubo, S. Fukuzumi, Bull. Chem. Soc. Jpn. 2009, 82,
303.
light (= 420 nm) from
a Shimadzu RF-5300PC fluorescence
spectrophotometer. Under the conditions of actinometric experiments,
DDQ absorbed essentially 35% incident light of = 420 nm. The light
intensity of monochromatized light of = 420 nm was determined as 1.5
[12] a) D. A. Nicewicz, D. S. Hamilton, Synlett 2014, 25, 1191; b) D. A.
Nicewicz, T. M. Nguyen, ACS Catal. 2014, 4, 35.
[13] S. P. Pitre, C. D. McTiernan, J. C. Scaiano, Acc. Chem. Res. 2016
49, in press, DOI: 10.1021/acs.accounts.6b00012.
,
x
10–9 einstein s–1. The progress of photochemical reaction was
monitored using a Shimadzu GC-17A gas chromatograph and Shimadzu
MS-QP5000 mass spectrometer. The quantum yields were determined
from increase of total amount of products.
[14] K. Ohkubo, A. Fujimoto, S. Fukuzumi, J. Am. Chem. Soc. 2013, 135,
5368.
[15] K. Ohkubo, A. Fujimoto, S. Fukuzumi, Chem.–Asian J. 2016, 11, 996.
[16] K. Ohkubo, K. Hirose, S. Fukuzumi, Chem.–Eur. J. 2015, 21, 2855.
Laser flash photolysis measurements. The measurements of
femtosecond transient absorption spectra in the photochemical reactions
of DDQ with saturated hydrocarbons were performed according to the
[17] S. M. Hubig, T. M. Bockman, J. K. Kochi, J. Am. Chem. Soc. 1997
119, 2926.
,
[18] D. Gupta, B. Antony, J. Chem. Phys. 2014, 141, 054303.
following procedures. Typically,
a nitrogen-saturated cyclohexane
[19] 2011
Search
for
Species
Data
by
IE
Value.
solution containing DDQ (10 mM) was excited by a femtosecond laser
pulse. Femtosecond transient absorption spectroscopy experiments were
conducted using an ultrafast source: Integra-C (Quantronix Corp.), an
optical parametric amplifier: TOPAS (Light Conversion Ltd.) and a
commercially available optical detection system: Helios provided by
Ultrafast Systems LLC. The instrumental details are described in SI.
[20] C-H bond activation by DDQ: a) Z. Huang, L. Jin, P. Peng, H. Yi, A.
Lei, Angew. Chem. Int. Ed. 2013, 52, 7151; b) G. Zhang, C. Liu, H.
Yi, Q. Meng, C. Bian, H. Chen, J.-X. Jian, Li-Zhu Wu, A. Lei, J. Am.
Chem. Soc. 2015, 137, 9273; c) H. Yi, Q. Liu, J. Liu, Z. Zeng, Y.
Yang, A. Lei, ChemSusChem 2012, 5, 2143.
[21] Heterogeneous oxygenations of alkanes using metal-oxide
photocatalyst have been reported. See: a) W. Mu, J.-M. Herrmann,
P. Pichat, Catal. Lett. 1989, 3, 73; b) M. Tada, Y. Akatsuka, Y. Yang,
T. Sasaki, M. Kinoshita, K. Motokura, Y. Iwasawa, Angew. Chem. Int.
Ed. 2008, 47, 9252; c) X. Li, G. Chen, Y. Po-Lock, C. Kutal, J. Chem.
Technol. Biotechnol. 2003, 78, 1246.
Acknowledgements
This work was supported by JSPS KAKENHI (Nos.
16K13964, 26620154 and 26288037 to K.O. and 16H02268 to
S.F.) from the Ministry of Education, Culture, Sports, Science
and Technology (MEXT); SENTAN projects from JST, Japan
(to S.F.).
[22] N. Kulevsky, P. V. Sneeringer, L. D. Grina, V. I. Stenberg,
Photochem. Photobiol. 1970, 12, 395.
[23] We have chosen the reaction conditions to be [DDQ]0 = 3.0 – 5.0
mM, which makes it possible to absorb the excitation light enough
from a xenon lamp.
[24] a) C. G. Hatchard, C. A. Parker, Proc. R. Soc. London, Ser. A 1956
,
235, 518; b) J. G. Calvert, J. N. Pitts, Photochemistry, Wiley, New
York, 1966, p. 783.
Keywords: photoredox catalysis
oxygenation • electron transfer
•
quinone
•
radical
•
[25] a) Y. Iida, Bull. Chem. Soc. Jpn. 1971, 44, 1777; b) S. Fukuzumi, N.
Nishizawa, T. Tanaka, J. Org. Chem. 1984, 49, 3571.
[26] J. C. Dalton, N. J. Turro, Annu. Rev. Phys. Chem. 1970, 21, 499.
[27] N. J. Turro, V. Ramamurthy, J. C. Scaiano, Modern Molecular
Photochemistry of Organic Molecules, University Science Books,
[1]
[2]
[3]
[4]
a) Y.-Y. Gui, L. Sun, Z.-P. Lu, D. G. Yu, Org. Chem. Front. 2016, 3,
522; b) V. Carlos, ChemCatChem 2015, 7, 1790; c) E. Jahn, U. Jahn,
Angew. Chem. Int. Ed. 2014, 53, 13326.
Sausalito, CA, 2010
[28] M. V. Ensinas, J. C. Scaiano, J. Am. Chem. Soc. 1981, 103, 6393.
[29] J. C. Scaiano, J. Photochem. 1973 1974, 2, 81.
.
a) J. Chen, J. Cen, X. Xu, X. Li, Catal. Sci. Technol. 2016, 6 ,349; b)
X. Lang, X. Chen, J. Zhao, Chem. Soc. Rev. 2014, 43, 473; c) H.
Kisch, Angew. Chem. Int. Ed. 2013, 52, 812.
/
[30] K. Okada, M. Yamaji, H. Shizuka, J. Chem. Soc. Faraday Trans.
1998, 94, 861.
a) M. Schulza, C. Paulik, G. Knör, J. Mol. Catal. A, Chem. 2011, 347,
60; b) I. Paramasivam, H. Jha, N. Liu, P. Schmuki, Small 2012, 8,
3073.
[31] C. Coenjarts, J. C. Scaiano, J. Am. Chem. Soc. 2000, 122, 3635.
[32] D. Jornet, R. Tormos, M. A. Miranda, J. Phys. Chem. B 2011, 115,
10768.
a) G. Palmisano, V. Augugliaro, M. Pagliaro, L. Palmisano, Chem.
Commun. 2007, 3425; b) G. Palmisano, E. Garcia-Lopez, G. Marci,
V. Loddo, S. Yurdakal, V. Augugliaro, L. Palmisano, Chem. Commun.
2010, 46, 7074.
[33] For electron transfer from substrates to the singlet excited states of
ketones, see: S. Fukuzumi, N. Satoh, T. Okamoto, K. Yasui, T.
Suenobu, Y. Seko, M. Fujitsuka, O. Ito, J. Am. Chem. Soc. 2001
123, 7756.
,
[5]
[6]
M. A. Lazar, W. A. Daoud, RSC Adv. 2013, 4, 4130.
a) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013
113, 5322; b) L. Shi, W. Xia, Chem. Soc. Rev. 2012, 41, 7687.
,
[34] For electron transfer from substrates to the triplet excited states of
ketones, see: a) Y. M. A. Naguib, C. Steel, S. G. Cohen, J. Phys.
Chem. 1988, 92, 6574; b) T. Kirschberg, J. Mattay, J. Org. Chem.
1996, 61, 8885; c) N. T. Tzvetkov, T. Arndt, J. Mattay, Tetrahedron
2007, 42, 10497.
[7]
a) J. W. Tucker, C. R. J. Stephenson, J. Org. Chem. 2012, 77, 1617;
b) J. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev. 2011
40, 102.
,
[8]
[9]
a) A. Molnar, Curr. Org. Chem. 2016, 20, 381; b) S. Barata-Vallejo,
S. M. Bonesi, A. Po, Org. Biomol. Chem. 2015, 13, 11153.
a) T. Koike, M. Akita, Inorg. Chem. Front. 2014, 1, 562; b) T. Koike,
M. Akita, Synlett 2013, 24, 2492; c) M. Akita, T. Koike, C. R. Chimie
2015, 18, 742.
[35] I. Hermans, P. A. Jacobs, J. Peeters, Chem.–Eur. J. 2006, 12, 4229.
[36] I. Hermans, P. A. Jacobs, J. Peeters, J. Mol. Catal. A, Chem. 2006
251, 221.
,
[37] R. J. Schmidt, Appl. Catal. A 2005, 280, 89.
For internal use, please do not delete. Submitted_Manuscript