An Esterase with Superior Activity and Enantioselectivity towards 1,2-O-Isopropylideneglycerol Esters
and cell debris. Aliquots (20 mL) of the cell free extracts
were transferred into new 96-well plates containing BES
buffer (100 mL, 5 mM, pH 7.2), 4-nitrophenol (1 mM,
pH 7.2), and IPG butyrate (R or S) stock solutions of 5 mM.
The plate was placed in the microplate reader and shaken
for 15 s, the decrease in absorbance at 405 nm was moni-
tored each minute over 30 min, at 308C. Cell-free extracts
prepared from E. coli BL21 (DE3) cells transformed with
empty pET26b vector were used as references. Activities
were determined from slopes in the linear section of the
curve.[13] YbfF mutants of which the enantioselectivity was
potentially increased were selected and purified for further
characterization, and the corresponding genes were se-
quenced.
Dekker (University of Groningen) for the kind gift of the
IPG esters.
References
[1] U. T. Bornscheuer, FEMS Microbiol. Rev. 2002, 26, 73–
81.
[2] D. Bottcher, U. T. Bornscheuer, Curr. Opin. Microbiol.
2010, 13, 274–282.
[3] J. Jurczak, S. Pikul, T. Bauer, Tetrahedron 1986, 42,
447–488.
[4] E. Maconi, R. Gualandris, F. Aragozzini, Biotechnol.
Lett. 1990, 12, 415–418.
Kinetic Resolution of IPG Esters
[5] L. F. Godinho, C. R. Reis, P. G. Tepper, G. J. Poelar-
ends, W. J. Quax, Appl. Environ. Microbiol. 2011, 77,
6094–6099.
[6] S. Y. Park, S. H. Lee, J. Lee, K. Nishi, Y. S. Kim, C. H.
Jung, J. S. Kim, J. Mol. Biol. 2008, 376, 1426–1437.
[7] K. P. Hopfner, E. Kopetzki, G. B. Kresse, W. Bode, R.
Huber, R. A. Engh, Proc. Natl. Acad. Sci. USA 1998,
95, 9813–9818.
[8] F. H. Arnold, Nature 2001, 409, 253–257.
[9] Y. L. Boersma, M. J. Drçge, A. M. van der Sloot, T.
Pijning, R. H. Cool, B. W. Dijkstra, W. J. Quax, Chem-
biochem 2008, 9, 1110–1115.
[10] Y. L. Boersma, M. J. Drçge, W. J. Quax, FEBS J. 2007,
274, 2181–2195.
The procedure for the determination of the enantioselectivi-
ty of YbfF wild-type and mutants towards IPG esters is re-
ported elsewhere.[5] The samples were analyzed by chiral
GC on a Hewlett Packard 5890 series II gas chromatograph,
as described by Drçge et al.[22] The non-enzymatic hydrolysis
of the substrates was negligible under the conditions used.
The enantiomeric excess (ee) of products and substrates was
calculated according to Chen et al.[23] The calculated values
of enantiomeric excess of products and substrates were used
to determine the E-values by using the program Selectivity
(K. Faber, H. Hoenig. ftp://borgc185.kfunigraz.ac.at/pub/
enantio/). The chromatographs data corresponding to the ki-
netic resolution of racemic IPG-caprylate (3) with YbfF
wild-type and mutant W235I are provided as Figure S1 to
Figure S12 in the Supporting Information.
[11] L. G. Otten, F. Hollmann, I. W. Arends, Trends Biotech-
nol. 2010, 28, 46–54.
[12] M. T. Reetz, J. J. Peyralans, A. Maichele, Y. Fu, M.
Maywald, Chem. Commun. 2006, 41, 4318–4320.
[13] L. E. Janes, A. C. Lowendahl, R. J. Kazlauskas, Chem.
Eur. J. 1998, 4, 2324–2331.
Determination of the Kinetic Parameters
The kinetic parameters Km and kcat were determined using
a previously published protocol.[5]
[14] M. T. Reetz, D. Kahakeaw, R. Lohmer, ChemBioChem
2008, 9, 1797–1804.
Molecular Docking
[15] F. Molinari, O. Brenna, M. Valenti, F. Aragozzini,
Enzyme Microb. Technol. 1996, 19, 551–556.
[16] D. Romano, F. Falcioni, D. Mora, F. Molinari, A.
Buthe, M. Schumacher, Tetrahedron: Asymmetry 2005,
16, 841–845.
[17] M. T. Reetz, J. D. Carballeira, Nat. Protoc. 2007, 2,
891–903.
[18] M. T. Reetz, Angew. Chem. 2011, 123, 144–182; Angew.
Chem. Int. Ed. 2011, 50, 138–174.
[19] J. Sambrook, D. W. Russell, Molecular cloning: a labo-
ratory manual, 3nd edn., Cold Spring Harbor Laborato-
ry Press, New York. 2001.
[20] K. Miyazaki, M Takenouchi, Biotechniques 2002, 33,
1033–1038.
[21] F. W. Studier, Protein Expres. Purif. 2005, 41, 207–234.
[22] M. J. Drçge, R. Bos, H. J. Woerdenbag, W. J. Quax, J.
Sep. Sci. 2003, 26, 771–776.
Substrates R-1, S-1, R-3 and S-3 were constructed and mo-
lecular docking simulations were performed in wild-type
YbfF (Protein Data Bank accession code: 3BF7) and the
structural model of the YbfF mutant (W235I), using the
grid-based approach CDOCKER.[24,25] The active site resi-
due W235 of YbfF was mutated to isoleucine in silico. The
mutant enzyme model was energy minimized consisting of
150 steps of steepest descent followed by 500 iteractions of
the adopted basis-set Newton-Raphson algorithm. All struc-
tures containing substrates were further energy minimized
using CHARMm, consisting of 5000 steps of steepest de-
scent followed by 5000 iterations of the adopted basis-set
Newton-Raphson algorithm using an energy tolerance of
0.01 kcalmolÀ1 ꢁÀ1.
[23] C. S. Chen, Y. Fujimoto, G. Girdaukas, C. J. Sih, J. Am.
Acknowledgements
Chem. Soc. 1982, 104, 7294–7299.
[24] J. A. Erickson, M. Jalaie, D. H. Robertson, R. A. Lewis,
M. Vieth, J. Med. Chem. 2004, 47, 45–55.
[25] G. S. Wu, D. H. Robertson, C. L. Brooks, M. Vieth, J.
Comput. Chem. 2003, 24, 1549–1562.
L.F.G. the recipient of an Ubbo Emmius fellowship. G.J.P.
was financially supported by VIDI grant 700.56.421 from the
Division of Chemical Sciences of the Netherlands Organisa-
tion for Scientific Research (NWO-CW). We thank Dr. Frank
[26] L. G. Otten, W. J. Quax, Biomol. Eng. 2005, 22, 1–9.
Adv. Synth. Catal. 2012, 354, 3009 – 3015
ꢀ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3015