Green Chemistry
ARTICLE
DOI: 10.1039/C4GC02194K
Green Chemistry
(
81%) after 6 h at 250°C. With a yield of 70%, Pd/Al O is the 14. J. Le Nôtre, E. L. Scott, M. C. R. Franssen and J. P. M. Sanders,
2 3
most performant material for the production of 2ꢀpyrrolidone
from pyroglutamic acid. Optimization of the reaction 15. T. M. Lammens, J. Le Nôtre, M. C. Franssen, E. L. Scott and J. P.
parameters, like temperature and pH, for pyroglutamic acid
Sanders, ChemSusChem, 2011, , 785ꢀ791.
resulted in a selectivity to 2ꢀpyrrolidone of 90% at 225°C 16. T. M. Lammens, D. De Biase, M. C. R. Franssen, E. L. Scott and J. P.
without any pH adjustment, however at moderate conversion.
M. Sanders, Green Chem, 2009, 11, 1562–1567.
Besides pyroglutamic acid, glutamic acid was successfully 17. T. M. Lammens, M. C. R. Franssen, E. L. Scott and J. P. M. Sanders,
converted to 2ꢀpyrrolidone in a oneꢀpot reaction. The addition
Green Chem, 2010, 12, 1430ꢀ1436.
of 0.1 H PO yielded 72% of 2ꢀpyrrolidone at 250°C after 6 18. J.E. Holladay, US Pat. 7049446B2, 2004.
h, with 78% selectivity. The desired bioꢀbased lactam can thus 19. J. Deng, Q.ꢀG. Zhang, T. Pan, Q. Xu, Q.ꢀX. Guo and Y. Fu, RSC
be obtained from either pyroglutamic acid or glutamic acid.
Adv., 2014, , 27541ꢀ27544.
This is a valuable result as glutamic acid is massively available 20. B. Vandeputte, K. Moonen and P. Roose, WO 2013107822A1, 2013.
Green Chem, 2011, 13, 807ꢀ809.
4
M
3
4
4
1
1
40
in biomass waste streams or by fermentative production.
21. Y. Teng, E. L. Scott and J. P. M. Sanders, J. Chem. Technol.
Biotechnol., 2012, 87, 1458ꢀ1465.
Acknowledgements
22. J. Fu, X. Lu and P. E. Savage, ChemSusChem, 2011,
4
, 481ꢀ486.
3. J. Fu, X. Lu and P. E. Savage, Energy Environ. Sci., 2010, , 311ꢀ317
4. S. Lestari, P. MäkiꢀArvela, J. Beltramini, G. Q. Lu and D. Y. Murzin,
ChemSusChem, 2009, , 1109ꢀ1119.
2
2
3
F.D.S. and L.C. thank IWT for doctoral fellowships. D.D.V. is
grateful to KU Leuven for longꢀterm structural Methusalem
funding, to Belspo (IAPꢀPAI 7/05) and to FWO for research
project funding. S.B. and N.C. acknowledge funding by the
European Research Council (ERC Starting Grant # 335078ꢀ
COLOURATOMS). We also thank Karel Duerinckx for
assistance with NMR measurements.
2
2
2
5. M. Snåre, I. Kubičková, P. MäkiꢀArvela, K. Eränen and D. Y.
Murzin, Ind. Eng. Chem. Res., 2006, 45, 5708ꢀ5715.
6. R. W. Gosselink, S. A. Hollak, S. W. Chang, J. van Haveren, K. P. de
Jong, J. H. Bitter and D. S. van Es, ChemSusChem, 2013,
594.
6, 1576ꢀ
1
2
2
7. J. J. Guo, H. Lou, H. Zhao, X. G. Wang and X. M. Zheng, Mater.
Lett., 2004, 58, 1920ꢀ1923.
Notes and references
a
Centre for Surface Chemistry and Catalysis, Department of Microbial
8. P. G. N. Mertens, S. L. F. Corthals, X. Ye, H. Poelman, P. A. Jacobs,
B. F. Sels, I. F. J. Vankelecom and D. E. De Vos, J. Mol. Catal. A:
Chem., 2009, 313, 14ꢀ21.
and Molecular Systems, KU Leuven ꢀ University of Leuven, Kasteelpark
Arenberg 23 post box 2461, 3001 Heverlee, Belgium.
b
EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp,
Belgium
29. P. T. Anastas and J. C. Warner, Green Chemistry: Theory and
c
Department of Chemical Engineering, KU Leuven ꢀ University of
Practice. Oxford University Press, Oxford, 1998.
Leuven, Willem de Croylaan 46, post box 2423, 3001 Heverlee, Belgium
Electronic Supplementary Information (ESI) available: Catalyst
characterization and NMRꢀdata. See DOI: 10.1039/b000000x/
3
0. J. Fu, F. Shi, L. T. Thompson, X. Lu and P. E. Savage, ACS Catal.
2011, , 227ꢀ231.
31. S. Matsubara, Y. Yokota and K. Oshima, Org. Lett., 2004,
073.
32. J. Le Nôtre, S. C. M. Witteꢀvan Dijk, J. van Haveren, E. L. Scott and
J. P. M. Sanders, ChemSusChem, 2014, , 2712ꢀ2720.
E. Scott, F. Peter and J. Sanders, Appl. Microbiol. Biotechnol., 2007, 33. J. P. Ford, J. G. Immer and H. H. Lamb, Top. Catal., 2012, 55, 175ꢀ
,
1
6
, 2071ꢀ
2
1
2
.
.
Y. X. Huo, D. G. Wernick and J. C. Liao, Curr. Opin. Biotechnol.
012, 23, 406ꢀ413.
,
2
7
75, 751ꢀ762.
184.
3
4
5
7
.
.
.
.
G. W. Huber and A. Corma, Angew. Chem., 2007, 46, 7184ꢀ7201.
A. Corma, S. Iborra and A. Velty, Chem. Rev., 2007, 107, 2411ꢀ2502.
J. J. Bozell and G. R. Petersen, Green Chem., 2010, 12, 539ꢀ554.
34. R. M. Silverstein, F. X. Webster and J. D. Kiemle, Spectrometric
Identification of organic spectra, 7 edn., John Wiley & Sons, Inc.,
New York, 2005.
C. O. Tuck, E. Pérez, I. T. Horváth, R. A. Sheldon and M. Poliakoff, 35. M. Mavrikakis and M. A. Barteau, J. Mol. Catal. A: Chem., 1998,
Science, 2012, 337, 695ꢀ699.
131, 135ꢀ147.
R. L. Belyea, K. D. Rausch and M. E. Tumbleson, Bioresour. 36. G. W. Huber and J. A. Dumesic, Catal. Today, 2006, 111, 119ꢀ132.
8
.
.
Technol., 2004, 94, 293ꢀ298.
37. R. R. Davda, J. W. Shabaker, G. W. Huber, R. D. Cortright and J. A.
9
1
P. G. Dalev, Bioresour. Technol., 1994, 48, 265ꢀ267.
Dumesic, Appl. Catal., B, 2003, 43, 13ꢀ26.
0. C. Martín, A. Moure, G. Martín, E. Carrillo, H. Domínguez and J. C. 38. J. W. Shabaker, G. W. Huber, R. R. Davda, R. D. Cortright and J. A.
Parajó, Biomass Bioenergy, 2010, 34, 533ꢀ538.
Dumesic, Catal. Lett., 2003, 88, 1ꢀ8.
1. T. M. Lammens, M. C. R. Franssen, E. L. Scott and J. P. M. Sanders, 39. A. Gotti and R. Prins, J. Catal., 1998, 175, 302ꢀ311.
1
1
1
Biomass Bioenergy, 2012, 44, 168ꢀ181.
40. W. Leuchtenberger, K. Huthmacher and K. Drauz, Appl. Microbiol.
Biotechnol., 2005, 69, 1ꢀ8.
2. J. Sanders, E. Scott, R. Weusthuis and H. Mooibroek, Macromol.
Biosci., 2007, 7, 105ꢀ117.
3. L. Claes, R. Matthessen, I. Rombouts, I. Stassen, T. De
Baerdemaeker, D. Depla, J. A. Delcour, B. Lagrain and D. E. De
Vos, ChemSusChem, 2015, 8, 345ꢀ352.
8
| Green. Chem., 2015, 00, 1-3
This journal is © The Royal Society of Chemistry 2012