LETTER
Enantioselective Synthesis of Cyanohydrins by a Novel Aluminum Catalyst
629
(4) For reviews on enantioselective synthesis and applications
of cyanohydrins: (a) Effenberger, F. Angew. Chem., Int. Ed.
Engl. 1994, 33, 1555. (b) Gregory, R. J. H. Chem. Rev.
1999, 99, 3649. (c) North, M. Tetrahedron: Asymmetry
2003, 14, 147. (d) Brunel, J.-M.; Holmes, I. P. Angew.
Chem. Int. Ed. 2004, 43, 2752.
(5) For aluminum-catalyzed TMSCN enantioselective addition
to aldehydes see: (a) Iovel, I.; Popelis, Y.; Fleisher, M.;
Lukevics, E. Tetrahedron: Asymmetry 1997, 8, 1279.
(b) Hamashima, Y.; Sawada, D.; Nogami, H.; Kanai, M.;
Shibasaki, M. Tetrahedron 2001, 57, 805. (c) Casas, J.;
Nájera, C.; Sansano, J. M.; Saá, J. M. Org. Lett. 2002, 4,
2589. (d) For aluminum-catalyzed TMSCN enantioselective
addition to ketones see: Deng, H.; Isler, M. P.; Snapper, M.
L.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2002, 41, 1009.
(6) Temperature of a cold room.
Tentatively, we propose an initial reaction of TMSCN to
the aluminum alkoxide followed by hydrogen bonding of
the aldehyde to the free hydroxy group, leading to struc-
ture II (Scheme 4). An internal delivery of the cyanide to
the re face of the aldehyde to adduct III, followed by
silylation of the alkoxy group would lead to the final
product.
(7) Typical Procedure
Catalysis Generation: A 2 M solution of trimethylalu-
minum in toluene (25 mL, 0.05 mmol) was added dropwise
to a solution of ligand 1 (36 mg, 0.056 mmol) in 1.0 mL of
chlorobenzene at r.t. After stirring for 30 min at the same
temperature, the resulting solution was cooled to 4 °C to be
used as catalyst.
TMSCN Addition: Aldehyde 2 (0.5 mmol) was added in
one portion to the catalyst solution at 4 °C and after 10 min
TMSCN (73 mL, 0.55 mmol) was added over 2 min. The
reaction mixture was stirred at the same temperature for 24
h. Then the reaction was quenched with 2.0 mL of pH 7
buffer phosphate solution (Na2HPO4/NaH2PO4) and
extracted with EtOAc (3 × 5 mL). The combined organic
layers were washed with brine (5 mL), dried over MgSO4
and concentrated to give a colorless oil. The crude was
purified by flash chromatography on silica gel (petroleum
ether–EtOAc, 5:1) to yield the corresponding silylated
cyanohydrins.
Scheme 4 Mechanism rationale
In summary, we have developed a novel aluminum
catalyst based on our chiral ligand 1, which lets us to carry
out the enantioselective addition of TMSCN to aldehydes
with reasonable yields and enantioselectivity. More
experiments to determine the nature of the active catalyst
and the mechanism of the reaction are currently under-
way.
(8) (a) Brusse, J.; Roos, E. C.; Van der Gen, A. Tetrahedron
Lett. 1988, 29, 4485. (b) Almsick, A.; Buddrus, J.;
Hoenicke-Schmidt, P.; Laumen, K.; Schneider, M. J. Chem.
Soc., Chem. Commun. 1989, 18, 1391. (c) Effenberger, F.;
Hörsch, B.; Förster, S.; Ziegler, T. Tetrahedron Lett. 1990,
31, 1249. (d) Effenberg, R.; Gutterer, B.; Ziegler, T. Liebigs
Ann. Chem. 1991, 269. (e) Dhanoa, D.; Bagley, S. W.;
Chang, R. S. L.; Lotti, V. J.; Chen, T.-B. J. Med. Chem.
1993, 36, 3738. (f) Effenberger, F.; Eichhorn, J.
Tetrahedron: Asymmetry 1997, 8, 469. (g) Hwang, C. D.;
Hwang, D.-R.; Uang, B.-J. J. Org. Chem. 1998, 63, 6762.
(h) Yang, W. B.; Fang, J. M. J. Org. Chem. 1998, 63, 1356.
(i) Abiko, A.; Wang, G. Tetrahedron 1998, 54, 11405.
(j) Liang, S.; Bu, X. R. J. Org. Chem. 2002, 67, 2702.
(k) Nogami, H.; Motomu, K.; Shibasaki, M. Chem. Pharm.
Bull. 2003, 51, 702.
Acknowledgment
We thank the National Science Foundation and the National Insti-
tute of Health, General Medical Sciences (GM13598), for their
generous support of our programs. S.M.S thanks Fundación Ramón
Areces for a postdoctoral fellowship.
(9) Characterization of the New Compounds:
Compound 3c: 1H NMR (300 MHz, CDCl3): d = 7.32 (s, 2
H), 7.26 (s, 1 H), 5.66 (s, 1 H), 2.59 (s, 3 H), 0.48 (s, 9 H)
ppm. 13C NMR (300 MHz, CDCl3): d = 138.8, 136.2, 131.0,
124.2, 119.5, 63.8, 21.3, –0.1 ppm. IR (neat): 2960, 2921,
1612, 1464, 1255, 1159, 1101, 846, 754, 692 cm–1. Anal.
Calcd for C13H19NOSi: C, 66.90; H, 8.21; N, 6.00. Found: C,
66.67; H, 7.95; N, 5.95. Enantiomer separation by HPLC
(Daicel Chiralpak AD, l = 250 nm, heptane–i-PrOH =
99.95:0.05; 1.0 mL/min; 57% ee): tR = 6.83 (major) and 7.98
min. [a]D –16.28 (c 2.12, CHCl3).
References
(1) (a) Trost, B. M.; Yeh, V. S. C. Angew. Chem. Int. Ed. 2002,
41, 861. (b) Trost, B. M.; Terrell, L. R. J. Am. Chem. Soc.
2003, 125, 338. (c) Trost, B. M.; Mino, T. J. Am. Chem. Soc.
2003, 125, 2410. (d) Trost, B. M.; Fettes, A.; Shireman, B.
T. J. Am. Chem. Soc. 2004, 126, 2660.
(2) Atom economy in organic synthesis: (a) Trost, B. M.
Science 1991, 254, 1471. (b) Trost, B. M. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 259.
(3) (a) Gaucher, A.; Ollivier, J.; Salaün, J. Synlett 1991, 151.
(b) Schwindt, M. A.; Belmont, D. T.; Carlson, M.; Franklin,
L. C.; Hendrickson, V. S.; Karrick, G. L.; Poc, R. W.;
Sobicray, D. M.; Van de Vusse, J. J. Org. Chem. 1996, 61,
9564. (c) Effenberger, F.; Jäger, J. J. J. Org. Chem. 1997, 62,
3867.
Compound 3f: 1H NMR (300 MHz, CDCl3): d = 7.36 (m, 3
H), 5.43 (s, 1 H), 0.27 (s, 9 H) ppm. 13C NMR (300 MHz,
CDCl3): d = 139.5, 135.7, 129.6, 124.8, 118.3, 62.4, –0.2
ppm. IR (neat): 3083, 2961, 2901, 1592, 1574, 1435, 1259,
1202, 1119, 872, 805, 754 cm–1. Anal. Calcd for
C11H13Cl2NOSi: C, 48.18; H, 4.78; N, 5.11. Found: C, 48.61;
H, 5.17; N, 5.03. Enantiomer separation by HPLC (Daicel
Synlett 2005, No. 4, 627–630 © Thieme Stuttgart · New York