2
1
21
Table 2 Relaxivities r1p (mM
complexes in the presence and absence of NaHCO
porcine liver esterase (100 units) (pH 7.4, 298 K, 20 MHz)
s
) ¡5% of Gd(III) (0.2 mM)
The authors thank Prof. Silvio Aime (Universit a` di Torino)
for the use of his relaxometers and the EPSRC National
Mass Spectrometry Service Centre, Swansea for high resolution
ESMS.
3
(10 mM) and
Complex +
Complex
only
Complex +
esterase
Complex +
NaHCO
3
NaHCO +
esterase
3
Notes and references
[Gd.2]
[Gd.3]
[Gd.4]
10.2
9.9
11.3
10.8
10.5
10.8
5.7
5.7
10.8
10.8
10.5
10.8
{ More details on the fitting of the decay curves are contained in the
supplementary information.
32
1
For a selection of recent reviews see: M. P. Lowe, Aust. J. Chem., 2002,
5, 551; M. P. Lowe, Curr. Pharm. Biotechnol., 2004, 5, 519; P. Caravan,
5
hydration state q = 2 and size (longer rotational correlation times
2
Chem. Soc. Rev., 2006, 35, 512; Z. Zhang, S. A. Nair and T. J. McMurry,
Curr. Med. Chem., 2005, 12, 751; S. Aime, S. Geninatti Crich,
E. Gianolio, G. B. Giovenzana, L. Tei and E. Terreno, Coord. Chem.
Rev., 2006, 250, 1562; M. Bottrill, L. Kwok and N. J. Long, Chem. Soc.
Rev., 2006, 35, 557.
2 M. P. Lowe, D. Parker, O. Reany, S. Aime, M. Botta, G. Castellano,
E. Gianolio and R. Pagliarin, J. Am. Chem. Soc., 2001, 123, 7601;
M. P. Lowe and D. Parker, Chem. Commun., 2000, 707; M. Woods,
G. E. Kiefer, S. Bott, A. Castillo-Muzquiz, C. Eshelbrenner,
L. Michaudet, K. McMillan, S. D. K. Mudigunda, D. Ogrin,
G. Tircs o´ , S. Zhang, P. Zhao and A. D. Sherry, J. Am. Chem. Soc.,
R
t cf. [GdDOTA] ). These values are similar to those of
11
GdHOPO-based q = 2 complexes.
To demonstrate the ability of an enzyme to activate the contrast
agents, the relaxivities of the three Gd(III) complexes were
2
measured in the presence and absence of HCO3 and porcine
liver esterase. The results of these studies are shown in Table 2.
Solutions were prepared containing complex alone; complex
+
10 mM NaHCO
NaHCO + esterase (intracellular concentration of HCO
y10 mM). Relaxivities of the solutions were measured (at 298 K,
0 MHz) 2 h after incubation at 310 K. The results clearly
3
; complex + esterase; and complex + 10 mM
2
3
3
is
2004, 126, 9248; M. Woods, S. Zhang, V. H. Ebron and A. D. Sherry,
Chem.–Eur. J., 2003, 9, 4634; S. Zhang, K. Wu and A. D. Sherry,
Angew. Chem., Int. Ed., 1999, 38, 3192; S. Aime, M. Botta,
S. Geninatti Crich, G. Giovenzana, G. Palmisano and M. Sisti,
Chem. Commun., 1999, 1577; R. Hovland, C. Gløg a˚ rd, A. J. Aasen and
J. Klaveness, J. Chem. Soc., Perkin Trans. 2, 2001, 929.
W. Li, S. E. Fraser and T. J. Meade, J. Am. Chem. Soc., 1999, 121,
1413; K. Hanaoka, K. Kikuchi, Y. Urano and T. Nagano, J. Chem.
Soc., Perkin Trans. 2, 2001, 1840; K. Hanaoka, K. Kikuchi, Y. Urano,
M. Narazaki, T. Yokawa, S. Sakamoto, K. Yamaguchi and T. Nagano,
Chem. Biol., 2002, 9, 1027; J. Paris, C. Gameiro, V. Humblet,
P. K. Mohapatra, V. Jacques and J. F. Desreux, Inorg. Chem., 2006,
45, 5092; E. L. Que and C. J. Chang, J. Am. Chem. Soc., 2006, 128,
15942.
R. A. Moats, S. E. Fraser and T. J. Meade, Angew. Chem., Int. Ed.
Engl., 1997, 36, 726; A. Y. Louie, M. M. Huber, E. T. Ahrens,
U. Rothb a¨ cher, R. Moats, R. E. Jacobs, S. E. Fraser and T. J. Meade,
Nat. Biotechnol., 2000, 18, 321; J. A. Duimstra, F. J. Femia and
T. J. Meade, J. Am. Chem. Soc., 2005, 127, 12847; A. L. Nivorozhkin,
A. F. Kolodziej, P. Caravan, M. T. Greenfield, R. B. Lauffer and
T. J. McMurry, Angew. Chem., Int. Ed., 2001, 40, 2903; S. Aime,
C. Cabella, S. Colombatto, S. G. Crich, E. Gianolio and F. Maggioni,
J. Magn. Reson. Imaging, 2002, 16, 394.
L. Burai, V. Hietopelto, R. Kir a´ ly, E. T o´ th and E. Br u¨ cher, Magn.
Reson. Med., 1997, 38, 146; S. Aime, A. Barge, M. Botta, J. A. K.
Howard, R. Kataky, M. P. Lowe, J. M. Moloney, D. Parker and
A. S. de Sousa, Chem. Commun., 1999, 1047; J. I. Bruce, R. S. Dickins,
L. J. Govenlock, T. Gunnlaugsson, S. Lopinski, M. P. Lowe, D. Parker,
R. D. Peacock, J. J. B. Perry, S. Aime and M. Botta, J. Am. Chem. Soc.,
2
demonstrate ester hydrolysis is occurring; an increased relaxivity is
noted for the neutral complexes [Gd.2] and [Gd.3] in the presence
3
2
of the enzyme as they are converted to [Gd.4] . This is entirely
3
3
2
expected as [Gd.4] possesses a slightly higher relaxivity than
[
Gd.2] or [Gd.3]. Both [Gd.2] and [Gd.3] exhibit a fall in relaxivity
2
1 21
s
in the presence of 10 mM NaHCO
3
(r1p = 5.7 mM
for both);
this correlates with the pH-dependency of carbonate-binding
32
depicted in Fig. 1. The slight lowering of relaxivity of [Gd.4]
21 21
from 11.3 to 10.8 mM
s
3
in the presence of 10 mM NaHCO is
4
again expected due to the low affinity for carbonate of this
complex at pH 7.4. The most important observation is the
relaxivity enhancement of both [Gd.2] or [Gd.3] in the presence of
1
0 mM NaHCO
3
when exposed to porcine liver esterase.
21
21
The increase in relaxivity from 5.7 mM
21 21
s
to 10.8 and
10.5 mM
s
respectively for [Gd.2] or [Gd.3] is due to their
32
conversion to the negatively charged complex [Gd.4] with its
much reduced affinity for carbonate at pH 7.4, i.e. complete
conversion occurs. The effect of enzyme-activation produces an
5
89% and 84% increase in relaxivity for complexes [Gd.2] and
[Gd.3] respectively. Such a large percentage increase is a significant
change with respect to magnetic resonance imaging.
2000, 122, 9674; S. Aime, E. Gianolio, E. Terreno, G. B. Giovenzana,
In conclusion, neutral Gd(III) complexes have been developed
2
R. Pagliarin, M. Sisti, G. Palmisano, M. Botta, M. P. Lowe and
D. Parker, J. Biol. Inorg. Chem., 2000, 5, 488; M. Botta, S. Aime,
A. Barge, G. Bobba, R. S. Dickins, D. Parker and E. Terreno, Chem.–
Eur. J., 2003, 9, 2102.
D. Messeri, M. P. Lowe, D. Parker and M. Botta, Chem. Commun.,
2001, 2742.
R. Y. Tsien, Nature, 1981, 290, 527.
and their propensity to bind endogenous HCO
3
has been
exploited. On activation by esterase, the relaxivities of these
complexes increased by y85% at physiological pH and NaHCO3
concentration, as anion binding is inhibited by the unmasked
negative charge. This augurs well for developing the proposed
accumulation and activation strategy for cellular MR imaging.
Indeed, one of the few enzyme-activated agents to be used in
6
7
8 M. M. Meijler, R. Arad-Yellin, Z. I. Cabantchik and A. Shanzer, J. Am.
Chem. Soc., 2002, 124, 12666.
9
C. C. Woodroofe and S. J. Lippard, J. Am. Chem. Soc., 2003, 125,
1458; C. C. Woodroofe, A. C. Won and S. J. Lippard, Inorg. Chem.,
005, 44, 3112.
‘molecular imaging’, Meade’s ‘benchmark’ EgadMe (b-galactosi-
dase substrate), shows a 57% increase in q and signal intensity on
1
2
enzyme activation; sufficient for in vivo imaging of gene
4
expression. Studies are underway to incorporate targeting
10 A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker,
L. Royle, A. S. de Sousa, J. A. G. Williams and M. J. Woods, J. Chem.
Soc., Perkin Trans. 2, 1999, 493; W. DeW. Horrocks, Jr. and
D. R. Sudnick, J. Am. Chem. Soc., 1979, 101, 334.
vectors to render the complexes more site-specific, as are studies
to fine-tune the carbonate-binding affinity to maximise the
percentage change in relaxivity on esterase activation.
11 K. N. Raymond and V. C. Pierre, Bioconjugate Chem., 2005,
16, 3.
4
046 | Chem. Commun., 2007, 4044–4046
This journal is ß The Royal Society of Chemistry 2007