1586
D. E. Ward et al.
PRACTICAL SYNTHETIC PROCEDURES
der reflux. After ca. 1 h, the reaction was complete by TLC analysis
(30% EtOAc in hexane) and the mixture was cooled to 40 °C with
the aid of an ice bath. The aqueous layer was decanted from a yel-
low oil that separated and settled. The yellow oil was washed with
H2O (500 mL) at 40 °C and the combined aqueous layers were ex-
tracted with CH2Cl2 (3 × 200 mL) with each extract passed through
a column of basic Al2O3 (Brockmann I, ca. 150 mesh; 200 g). The
column was finally eluted with CH2Cl2 (600 mL) and the combined
eluates were concentrated and then reconcentrated from hexane to
give the titled compound as a white, freely flowing, crystalline solid
(52 g, 78%); mp 59–60 °C.
IR (diffuse reflectance): 1704 cm–1.
1H NMR (500 MHz, CDCl3): d = 2.99–2.94 (m, 4 H), 2.72–2.68 (m,
4 H).
13C NMR (125 MHz, CDCl3): d = 210.0, 44.7, 30.6.
HRMS-EI: m/z [M+] calcd for C5H8OS: 116.0296; found: 116.0293.
(5) (a) Ward, D. E.; Guo, C.; Sasmal, P. K.; Man, C. C.; Sales,
M. Org. Lett. 2000, 2, 1325. (b) Ward, D. E.; Sales, M.;
Man, C. C.; Shen, J.; Sasmal, P. K.; Guo, C. J. Org. Chem.
2002, 67, 1618. (c) Ward, D. E.; Jheengut, V.; Akinnusi, O.
T. Org. Lett. 2005, 7, 1181. (d) Ward, D. E.; Gillis, H. M.;
Akinnusi, O. T.; Rasheed, M. A.; Saravanan, K.; Sasmal, P.
K. Org. Lett. 2006, 8, 2631.
(6) From N-methyl-4-piperidone: (a) Johnson, P. Y.; Berchtold,
G. A. J. Org. Chem. 1970, 35, 584. (b) Unkovskii, B. V.;
Psal’ti, F. I. Khim. Geterotsikl. Soedin., Sb. 1970, 2, 174;
Chem. Abstr. 1972, 77, 114188. (c) Garst, M. E.; McBride,
B. J.; Johnson, A. T. J. Org. Chem. 1983, 48, 8. From 1,5-
dibromo-3-pentanone: (d) Sviridov, S. V.; Vasilevskii, D.
A.; Kulinkovich, O. G. Zh. Org. Khim. 1991, 27, 1431.
(7) (a) Bennett, G. M.; Scorah, L. V. D. J. Chem. Soc. 1927,
194. (b) Fehnel, E. A.; Carmack, M. J. Am. Chem. Soc. 1948,
70, 1813.
(8) (a) Naylor, R. F. J. Chem. Soc. 1949, 2749. (b) Onesta, R.;
Castelfranchi, G. Gazz. Chim. Ital. 1959, 89, 1127.
(c) Casy, G.; Sutherland, A. G.; Taylor, R. J. K.; Urben, P.
G. Synthesis 1989, 767. (d) Rule, N. G.; Detty, M. R.;
Kaeding, J. E.; Sinicropi, J. A. J. Org. Chem. 1995, 60,
1665. (e) Matsuyama, H.; Miyazawa, Y.; Takei, Y.;
Kobayashi, M. J. Org. Chem. 1987, 52, 1703.
(f) Chowdhury, A. Z. M. S.; Khandker, M. M. R.; Bhuiyan,
M. M. H.; Hossain, M. K. Pak. J. Sci. Ind. Res. 2001, 44, 63.
(9) (a) Barkenbus, C.; Midkiff, V. C.; Newman, R. M. J. Org.
Chem. 1951, 16, 232. (b) Traverso, G. Chem. Ber. 1958, 91,
1224. (c) Parham, W. E.; Christensen, L.; Groen, S. H.;
Dodson, R. M. J. Org. Chem. 1964, 29, 2211. (d) Harada,
K.; Suginose, R.; Kashiwagi, K. Japanese Patent 99198350,
1999; Chem. Abstr. 2001, 134: 131428.
(10) (a) Commercially available (e.g., Aldrich Chemical Co.,
2005–2006: Cdn $70/L) or readily prepared from methyl
acrylate and H2S: Gershbein, L. L.; Hurd, C. D. J. Am. Chem.
Soc. 1947, 69, 241. (b) See also ref. 8e.
(11) (a) Kashiwagi, T.; Murakami, M.; Isaka, I.; Ozasa, T.
Japanese Patent 74 108119, 1974; Chem. Abstr. 1976, 85:
78006. (b) Duus, F. Tetrahedron 1981, 37, 2633. (c) Liu, H.
J.; Ngooi, T. K. Can. J. Chem. 1982, 60, 437. (d) Dowd, P.;
Choi, S. C. Tetrahedron 1991, 47, 4847. (e) Tamai, S.;
Ushirogochi, H.; Sano, S.; Nagao, Y. Chem. Lett. 1995, 295.
(f) Ghosh, A. K.; Liu, W. J. Org. Chem. 1995, 60, 6198.
(g) Conroy, J. L.; Sanders, T. C.; Seto, C. T. J. Am. Chem.
Soc. 1997, 119, 4285. (h) Li, C.-J.; Chen, D.-L. Synlett
1999, 735.
3,6-Dihydro-4-trimethylsilyloxy-2H-thiopyran (4)
Et3N (27.8 mL, 20.2 g, 0.20 mol) and Me3SiCl (19.2 mL, 16.3 g,
0.15 mol) were sequentially added to a stirred solution of 3 (11.6 g,
0.10 mol) in CHCl3 (116 mL) under argon and the mixture was al-
lowed to stand in the dark at r.t. in a well-stoppered flask. The reac-
1
tion progress was monitored by H NMR (a small sample was
withdrawn and processed as described below) and when complete
(3–4 d), the mixture was concentrated, diluted with hexane (200
mL), and filtered through Celite. The combined filtrate and hexane
washings were concentrated to give 3 as yellow oil (18.4 g, 98%
1
yield) that was homogenous by H NMR spectrum and was used
without further purification. The material slowly decomposed
(mainly by hydrolysis) upon storage under argon even at –15 °C. If
not used promptly, a convenient method5b of storage involves mak-
ing a solution of known concentration in benzene (ca. 1 M) contain-
ing Et3N (2 equiv). This solution can be stored for at least three
months at –15 °C with negligible decomposition. The product is re-
covered as required by concentrating aliquots.
1H NMR (300 MHz, CDCl3): d = 5.06–5.04 (m, 1 H), 3.15–3.14 (m,
2 H), 2.76–2.72 (m, 2 H), 2.27–2.23 (m, 2 H), 0.17 (s, 9 H).
13C NMR (75 MHz, CDCl3): d = 151.3, 102.2, 31.2, 25.7, 25.1, 0.3.
HRMS-EI: m/z [M+] calcd for C8H16OSSi: 188.0708; found:
188.0705.
Acknowledgment
(12) A reaction using 1.1 equiv of NaOMe did not go to
Authors thank the Natural Sciences and Engineering Research
Council (Canada) and the University of Saskatchewan for financial
support.
completion within 5 h (ca. 90% conversion).
(13) (a) Aoki, S.; Fujimura, T.; Nakamura, E. J. Am. Chem. Soc.
1992, 114, 2985. (b) Evans, P. A.; Modi, D. P. J. Org. Chem.
1995, 60, 6662. (c) Biondi, S.; Piga, E.; Rossi, T.; Vigelli, G.
Bioorg. Med. Chem. Lett. 1997, 7, 2061. (d) Karisalmi, K.;
Rissanen, K.; Koskinen, A. M. P. Org. Biomol. Chem. 2003,
1, 3193. (e) Karisalmi, K.; Koskinen, A. M. P.; Nissinen,
M.; Rissanen, K. Tetrahedron 2003, 59, 1421.
References
(1) (a) Press, J. B.; Russell, R. K.; Christiaens, L. E. E. In
Comprehensive Heterocyclic Chemistry II, Vol. 2; Bird, C.
W., Ed.; Elsevier: Oxford, 1997. (b) Ingall, A. H. In
Comprehensive Heterocyclic Chemistry II, Vol. 5;
McKillop, A., Ed.; Pergamon: Oxford, 1997. (c)Vedejs, E.;
Krafft, G. A. Tetrahedron 1982, 38, 2857.
(2) For an overview and list of references, see: (a) Samuel, R.;
Nair, S. K.; Asokan, C. V. Synlett 2000, 1804. (b) Ward, D.
E.; Gai, Y.; Lai, Y. Synlett 1996, 261.
(3) Review: Vartanyan, R. S. Arm. Khim. Zh. 1985, 38, 166.
(4) Aldrich Chemical Co., 2005–2006: Cdn $174/5 g of 3. Using
the procedure described herein, we estimate the cost of
materials (solvents, reagents and other materials) for the
preparation of 3 to be ca. $1/g (50 g scale).
(14) House, H. O.; Czuba, L. J.; Gall, M.; Olmstead, H. D. J. Org.
Chem. 1969, 34, 2324.
(15) Na metal was cut into pieces weighing ca. 50–100 mg (3–5
mm per side). The rate of Na consumption depends on the
size of pieces; with larger pieces, more time is required to
reach 90% conversion.
(16) A few specks of Na metal may remain at this point.
(17) The presence of small amounts of 1 (<1%) and its
corresponding half-acid (1–2%) were detected by 13C NMR
and confirmed by spiking with authentic samples.
Synthesis 2007, No. 10, 1584–1586 © Thieme Stuttgart · New York