J. Am. Chem. Soc. 1997, 119, 7533-7544
7533
Experimental and Theoretical Approach to Hydrogen-Bonded
Diastereomeric Interactions in a Model Complex
Philippe H. Hu1nenberger,† Josef K. Granwehr,† Jean-Nicolas Aebischer,‡,§
Nagwa Ghoneim,‡ Edwin Haselbach,‡ and Wilfred F. van Gunsteren*,†
Contribution from the Laboratorium fu¨r Physikalische Chemie, ETH-Zentrum,
CH-8092 Zu¨rich, Switzerland, and Institut de Chimie Physique de l’UniVersite´, Pe´rolles,
CH-1700 Fribourg, Switzerland
ReceiVed February 17, 1997X. ReVised Manuscript ReceiVed May 9, 1997
Abstract: Binding affinities of (R,R)-1,2-cyclohexanediamine (R) to (R,R)-1,2-cyclopentanediol (R5) and (S,S)-1,2-
cyclopentanediol (S5) and to the corresponding cyclohexanediols (R6 and S6) have been measured in benzene and in
CCl4 at 298 K by microcalorimetry, and unexpected differences between the diastereomeric complexes are observed.
Long time scale (0.1 µs) molecular-dynamics simulations of the two smaller diastereomeric complexes, R/R5 and
R/S5, in a simplified solvent model are reported. A direct free energy calculation gives results in good agreement
with the experimental values measured in benzene for the first pair, but nearly identical results for the second pair,
which is at variance with experiment. A systematic analysis of the dependence of simulation results on model
parameters is performed, and no possibility is found to improve the enantioselectivity by parameter tuning. Other
possible causes for discrepancies are specific solute-solvent or solvent-solvent interactions, electronic charge
redistribution effects, or formation of clusters of more than two molecules. Owing to the long time scales reached,
a well-converged picture of the dynamics is obtained, and the species present at equilibrium can be studied in detail.
The average lifetime of the complex is found to be about 200 ps, whereas that of a hydrogen bond is only about 5
ps. Besides the unbound state, the dominant species observed in the simulations for both diastereomeric pairs are
singly hydrogen-bonded complexes, with a clear preference for a O to N over the N to O hydrogen bond. Many
other hydrogen-bonding patterns (bridged, double) are also observed in minor amounts.
Introduction
play a key role in both domains.20-23 Their study by experi-
mental and theoretical24,25 techniques is therefore of great
interest.
Diastereomeric interactions are of general interest in both
biochemistry and organic chemistry.1-3 In biochemistry they
determine enantioselectivity of substrate binding to proteins, e.g.,
enzymes,4-6 antibodies7-9 or sensorial receptors,10-14 and in
organic chemistry their action in the ground state or in the
transition state leading to products is at the origin of the
enantioselectivities observed in organic or enzyme catalyzed
reactions.3,15-17 Due to the high directionality of the hydrogen
bond,18,19 hydrogen-bonded diastereomeric interactions often
One approach to studying these interactions is to measure
by NMR titration or calorimetric techniques26 the binding
affinities of diastereomeric complexes of small organic mol-
ecules. A variety of such complexes have been studied as model
compounds by microcalorimetric methods.27 The measured
thermodynamic parameters for binding sometimes display
dramatic differences for the two diastereomeric pairs. For
example, the binding affinities of (R,R)-1,2-cyclohexanedi-
amine (R) to (R,R)-1,2-cyclopentanediol (R5) and to (S,S)-1,2-
cyclopentanediol (S5), measured in benzene, show unexpected
differences (Figure 1). S5 binds to R with an enthalpy change
(∆Hb) about 20 kJ/mol lower and an entropy change (∆Sb) about
80 J/(K‚mol) lower than its enantiomer. The cyclohexanediols
R6 and S6 (Figure 1) behave similarly. When the solvent is
changed from benzene to CCl4, the enthalpy and entropy
changes upon binding are somewhat reduced in magnitude, as
well as the differences in these quantities for the diastereomeric
pairs. The general behavior of these systems is, however,
† Laboratorium fu¨r Physikalische Chemie.
‡ Institut de Chimie Physique de l’Universite´.
§ Present address: Ecole d’Inge´nieurs de Fribourg.
X Abstract published in AdVance ACS Abstracts, July 15, 1997.
(1) Craig, D. P.; Mellor, D. P. Top. Curr. Chem. 1976, 63, 1-70.
(2) Etter, M. C. J. Phys. Chem. 1991, 95, 4601-4610.
(3) Webb, T. H.; Wilcox, C. S. Chem. Soc. ReV. 1993, 22, 383-395.
(4) Ortiz, C.; Tellier, C.; Williams, H.; Stolowich, N. J.; Scott, A. I.
Biochemistry 1991, 30, 10026-10034.
(5) Schirmeister, T.; Otto, H.-H. J. Org. Chem. 1993, 58, 4819-4822.
(6) Marx-Tibbon, S.; Katz, E.; Willner, I. J. Am. Chem. Soc. 1995, 117,
9925-9926.
(7) Benkirane, N.; Friede, M.; Guichard, G.; Briand, J.-P.; van Regen-
mortel, M. H. V; Muller, S. J. Biol. Chem. 1993, 268, 26279-26285.
(8) Imaizumi, M.; Sisido, M. Chem. Lett. 1994, 1, 51-52.
(9) Wulff, G. Angew. Chem., Int. Ed. Engl. 1995, 34, 1812-1832.
(10) Schallenberger, R. S.; Acree, T. E.; Lee, C. Y. Nature 1969, 221,
555-556.
(20) Jeong, K. S.; Tjivikua, T.; Muehldorf, A.; Deslongchamps, G.;
Famulok, M.; Rebek, J., Jr. J. Am. Chem. Soc. 1991, 113, 201-209.
(21) Adrian, J. C.; Wilcox, C. S. J. Am. Chem. Soc. 1992, 114, 1398-
1403.
(22) Connelly, P. R.; Aldape, R. A.; Bruzzese, F. J.; Chambers, S. P.;
Fitzgibbon, M. J.; Fleming, M. A.; Itoh, S.; Livingston, D. J.; Navia, M.
A.; Thomson, J. A.; Wilson, K. P. Proc. Natl. Acad. Sci. U.S.A. 1994, 91,
1964-1968.
(23) Usher, K. C.; Remington, S. J.; Martin, D. P.; Drueckhammer, D.
G. J. Am. Chem. Soc. 1994, 33, 7753-7759.
(24) Wade, R. C.; Goodford, P. J. J. Med. Chem. 1993, 36, 148-156.
(25) Smith, D. A. Modeling the hydrogen bond; Am. Chem. Soc. Symp.
Ser.; American Chemical Society: Washington, 1994.
(26) Connors, K. A. Binding constants; Wiley, New York, 1987.
(27) Haselbach, E.; Ghoneim, N.; Aebischer, J.-N. Progress reports,
CHiral2-Workshops of the Swiss National Science Foundation, 1994 and
1995.
(11) Russell, G. F.; Hills, J. I. Science 1971, 172, 1043-1044.
(12) Friedman, L.; Miller, J. G. Science 1971, 172, 1044-1046.
(13) Chedd, G. The search for sweetness. New Sci. 1974, 62, 299-302.
(14) Walters, E. J. Chem. Educ. 1995, 72, 1680-1683.
(15) Boland, W.; Fro¨ssl, C.; Lorenz, M. Synthesis 1991, 12, 1049-1072.
(16) Famulok, M.; Jeong, K.-S.; Deslongchamps, G.; Rebek, J., Jr.
Angew. Chem., Int. Ed. Engl. 1991, 30, 858-860.
(17) Curran, D. P.; Qi, H. HelV. Chim. Acta 1996, 79, 21-30.
(18) Taylor, R.; Kennard, O.; Versichel, W. Acta Crystallogr. B 1984,
40, 280-288.
(19) Scheiner, S. Acc. Chem. Res. 1994, 27, 402-408.
S0002-7863(97)00503-9 CCC: $14.00 © 1997 American Chemical Society