approach,14,16 i.e. bysuccessivepartial functionalization of
the amine termini, resulting in a stochastic distribution of
products without any degree of control over individual
functional group placement.17 Indeed, Baker and co-work-
ers have recently showed that the random functionaliza-
tion of dendrimers leads to a complex mixture of products
that is far from following a Gaussian distribution and that
in most cases only a small percentage of the dendrimers
have the desired multifunctionality.17 While highly desir-
able, synthetic strategies to selectively multifunctionalize
dendrimers are limited.15,18-26
Our group has reported the synthesis of trifunctional
poly(amide)-based dendrimers and has demonstrated their
orthogonal functionalization by using either the copper-
catalyzed azide alkyne 1,3-dipolar cycloaddition (CuAAC)
or the strain promoted azide alkyne cycloaddition
(SPAAC) combined with Schiff base coupling.27-30 In this
contribution, we describe the basic building blocks for a
dendrimer-based multifunctionalization strategy that has
the potential to be utilized in theranostics and other bio-
materials applications. We report a synthetic strategy
toward multifunctional dendrimers that consists of the
combination of two different dendrons into a Janus-
like18,31-35 dendrimer, followed by the reaction with an
AB6C1 dendron resulting in a well-defined hyperbranched
multifunctional dendrimer.
Among the most promising NIR dyes36,37 are cyanine-
based dyes.38-44 Recently, Gao and co-workers have
shown that when the chlorine atom of the cyanine dyes is
replaced by an amine group, the resulting amino-cyanine
dyes have high quantum yields and large Stokes shifts
(>140 nm).45 Our group has demonstrated that the SRN
1
reaction between the chloride-containing cyanine dye and
functionalized amines is fully orthogonal to azides and
acid groups.46 To increase water solubility, we select here a
cyanine dye that contains two sulfonate groups at the
end of the propyl chains on the nitrogen of the indolenine
ring. Furthermore, the negative charges on the sulfonate
groups should enhance the biocompatibility of the dye-
dendrimer conjugate since it has been demonstrated that
negatively charged dendrimers are less toxic than their
positively charged counterparts.13,14
The dendrons used in our strategy are poly(amide)-
based to ensure biocompatibility and follow the 1f
(2þ1) connectivity pioneered by Newkome.20,26 All peptide
coupling reactions described here were achieved success-
fullyusingHATU asthecouplingagent,andalldendrimers
were purified easily by dialysis using a Spectra-Por MWCO
(molecular weight cut off) 2000 dialysis membrane.
The basic synthesis toward our target dendrimer 7 is
shown in Scheme 1. The dendrimer design is based on
dendron 1 containing nine protected acid groups and one
acidgroupatthe focal pointanddendron2 containingnine
azide groups and one amine at the focal point. Both
dendrons were synthesized according to our previous
report29 (see Supporting Information (SI) for experimental
details). The coupling reaction between 1 and 2 afforded
dendrimer 3 in 93% yield after purification by dialysis
against methanol. The quantitative coupling was proven
To demonstrate our strategy, we report the synthesis of a
dendrimer, bearing fifty-four acids, nine amines, and nine
azide groups, that has the potential to be multifunctiona-
lized in three steps (Scheme 1). As a proof-of-principle, we
demonstrate the orthogonal monofunctionalization by
selectively reacting the nine amine termini with a near-
infrared (NIR) fluorescent dye.
1
by H NMR spectroscopy with the shifting of the CH2-
(16) Majoros, I. J.; Williams, C. R.; Baker, J. R. Curr. Top. Med.
Chem. 2008, 8, 1165.
(17) Mullen, D. G.; Fang, M.; Desai, A.; Baker, J. R.; Orr, B. G.;
Banaszak Holl, M. M. ACS Nano 2010, 4, 657.
(18) Maraval, V.; Laurent, R.; Merino, S.; Caminade, A.-M.; Majoral,
J.-P. Eur. J. Org. Chem. 2000, 3555.
(19) Zhang, W.; Nowlan, D. T.; Thomson, L. M.; Lackowski, W. M.;
Simanek, E. E. J. Am. Chem. Soc. 2001, 123, 8914.
(20) Newkome, G. R.; Kim, H. J.; Moorefield, C. N.; Maddi, H.;
Yoo, K. S. Macromolecules 2003, 36, 4345.
(21) Sivanandan, K.; Sandanaraj, B. S.; Thayumanavan, S. J. Org.
Chem. 2004, 69, 2937.
COOH protons on 1 from 2.63 to 2.55 ppm as well as the
triplet corresponding to the CH2CH2NH2 protons of 2
from 3.77 to 3.60 ppm upon formation of 3 (the CH2NH2
protons cannot be used to monitor the reaction because
they overlap with the CH2N3 protons). Dendrimer 3 pre-
sents its molecular ion peak (MþH)þ at 3340.5 m/z (calcd
for C153H264N45O38: 3340.0 m/z) in the MALDI-TOF mass
spectrum corroborating the expected structure. The acid
termini on 3 were deprotected at room temperature using
(22) Lee, J. W.; Kim, B. K.; Kim, J. H.; Shin, W. S.; Jin, S. H. J. Org.
Chem. 2006, 71, 4988.
ꢀ
(23) Goodwin, A. P.; Lam, S. S.; Frechet, J. M. J. J. Am. Chem. Soc.
2007, 129, 6994.
(36) Bouteiller, C.; Clave, G.; Bernardin, A.; Chipon, B.; Massonneau,
M.; Renard, P.-Y.; Romieu, A. Bioconjugate Chem. 2007, 18, 1303.
(37) Sameiro, M.; Goncalves, T. Chem. Rev. 2009, 109, 190.
(38) Mishra, A.; Behera, R. K.; Behera, P. K.; Mishra, B. K.; Behera,
G. B. Chem. Rev. 2000, 100, 1973.
(39) Narayanan, N.; Patonay, G. J. Org. Chem. 2002, 60, 2391.
(40) Ye, Y. P.; Bloch, S.; Kao, J.; Achilefu, S. Bioconjugate Chem.
2005, 16, 51.
(24) Franc, G.; Kakkar, A. Chem. Commun. 2008, 5267.
(25) Antoni, P.; Hed, Y.; Nordberg, A.; Nystrom, D.; von Holst, H.;
Hult, A.; Malkoch, M. Angew. Chem., Int. Ed. 2009, 48, 2126.
(26) Newkome, G. R.; Shreiner, C. Chem. Rev. 2010, 110, 6338.
(27) Goyal, P.; Yoon, K.; Weck, M. Chem.;Eur. J. 2007, 13, 8801.
(28) Yoon, K.; Goyal, P.; Weck, M. Org. Lett. 2007, 9, 2051.
(29) Ornelas, C.; Weck, M. Chem. Commun. 2009, 5710.
(30) Ornelas, C.; Broichhagen, J.; Weck, M. J. Am. Chem. Soc. 2010,
132, 3923.
(41) Almutairi, A.; Guillaudeu, S. J.; Berezin, M. Y.; Achilefu, S.;
ꢀ
Frechet, J. M. J. J. Am. Chem. Soc. 2008, 130, 444.
(42) Almutairi, A.; Akers, W. J.; Berezin, M. Y.; Achilefu, S.;
ꢀ
(31) Wooley, K. L.; Hawker, C. J.; Frechet, J. M. J. J. Am. Chem.
ꢀ
Frechet, J. M. J. Mol. Pharmaceutics 2008, 5, 1103.
Soc. 1993, 115, 11496.
(32) Saez, I. M.; Goodby, J. W. Chem. Commun. 2003, 1726.
(33) Ropponen, J.; Nummelin, S.; Rissanen, K. Org. Lett. 2004, 6, 2495.
ꢁ
(34) Fuchs, S.; Pla-Quintana, A.; Mazeres, S.; Caminade, A.-M.;
Majoral, J.-P. Org. Lett. 2008, 10, 4751.
(35) Wu, P.; Malkoch, M.; Hunt, J. N.; Vestberg, R.; Kaltgrad, E.;
Finn, M. G.; Fokin, V. V.; Sharpless, K. B.; Hawker, C. J. Chem.
Commun. 2005, 5775.
(43) Talanov, V. S.; Regino, C. A. S.; Kobayashi, H.; Bernardo, M.;
Choyke, P. L.; Brechbiel, M. W. Nano Lett. 2006, 6, 1459.
(44) Saad, M.; Garbuzenko, O. B.; Ber, E.; Chandna, P.; Khandare,
J. J.; Pozharov, V. P.; Minko, T. J. Controlled Release 2008, 130, 107.
(45) Peng, X.; Song, F.; Lu, E.; Wang, Y.; Zhou, W.; Fan, J.; Gao, Y.
J. Am. Chem. Soc. 2005, 127, 4170.
(46) Ornelas, C.; Lodescar, R.; Durandin, A; Canary, J; Pennell, R.;
Liebes, L.; Weck, M. Chem.;Eur. J. 2011.
Org. Lett., Vol. 13, No. 5, 2011
977