Catalysis Science & Technology
Paper
Spectroscopy
6 D. S. Sidhaye, S. Kashyap, M. Sastry, S. Hotha and
B. L. V. Prasad, Langmuir, 2005, 21, 7979–7984.
7 E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar,
J. Feldmann, S. A. Levi, F. C. J. M. van Veggel,
D. N. Reinhoudt, M. Möller and D. I. Gittins, Phys. Rev. Lett.,
2002, 89, 203002.
8 J. Zhang, J. K. Whitesell and M. A. Fox, Chem. Mater.,
2001, 13, 2323–2331.
9 K. Shin and E. J. Shin, Bull. Korean Chem. Soc., 2008, 29,
1259–1262.
UV-VIS spectra were measured on a Hewlett Packard 8452A,
on a Shimadzu UV3101PC (Shimadzu Corporation, Kyoto,
Japan), or on a Cary 50 UV-Vis (Agilent Technologies, Santa
Clara, USA). Laser flash photolysis experiments were carried
out using a Surelite-II OPO Plus (a pump with a Nd-YAG at
355 nm) (Continuum, Santa Clara, USA) as the excitation
source. Data were recorded with a LFP 111 laser-flash photo-
lysis system (Luzchem Inc., Ottawa, Canada).
System characterization
10 A. Manna, P.-L. Chen, H. Akiyama, T.-X. Wei, K. Tamada and
W. Knoll, Chem. Mater., 2003, 15, 20–28.
Nanoparticle mean radius and silica shell thickness were
measured by either transmission electron microscopy (TEM)
using a Philips EM 301 apparatus or scanning electron
microscopy (SEM) using a JEOL JSM-7500F.
11 G. L. Hallett-Tapley, C. D'Alfonso, N. L. Pacioni,
C. D. McTiernan, M. González-Béjar, O. Lanzalunga, E. I. Alarcon
and J. C. Scaiano, Chem. Commun., 2013, 49, 10073–10075.
12 N. Nishimura, T. Sueyoshi, H. Yamanaka, E. Imai,
S. Yamamoto and S. Hasegawa, Bull. Chem. Soc. Jpn.,
1976, 49, 1381–1387.
Sample preparation
Typical experiments were performed in 1 cm × 1 cm quartz
cuvettes combining 50 to 500 μL of AuNPs or AuNP@SiO2
with water or ethanol or mixtures of acetonitrile–water until a
final volume of 3 mL was reached. Kinetic experiments were
performed after gradual addition of 5 to 45 μL of 5 mM or
1 mM ACN solutions of the corresponding AB to the previous
mentioned NP suspension. All azobenzenes/AuNP suspen-
sions except for AB and MO-AB were prepared in 5 : 1 ACN :
water mixtures. E–Z photochemical conversion was performed
with either a commercial photographic xenon flash lamp or
with the corresponding excitation wavelength of the OPO
laser. For the pH dependence experiments solutions of HCl or
NaOH were also used.
13 P. P. Birnbaum, J. H. Linford and D. W. G. Style, Trans.
Faraday Soc., 1953, 49, 735–744.
14 G. S. Hartley, J. Chem. Soc., 1938, 633–642.
15 N. J. Dunn, W. H. Humphries, A. R. Offenbacher, T. L. King
and J. A. Gray, J. Phys. Chem. A, 2009, 113, 13144–13151.
16 A. M. Sanchez and R. H. Rossi, J. Org. Chem., 1995, 60,
2974–2976.
17 S. Ciccone and J. Halpern, Can. J. Chem., 1959, 37, 1903–1910.
18 H. S. Taylor, Proc. R. Soc. London, Ser. A, 1925, 108, 105–111.
19 S. M. Oxford, J. D. Henao, J. H. Yang, M. C. Kung and
H. H. Kung, Appl. Catal., A, 2008, 339, 180–186.
20 M. M. Nigra, I. Arslan and A. Katz, J. Catal., 2012, 295,
115–121.
Acknowledgements
21 Y. Sun, B. Mayers, T. Herricks and Y. Xia, Nano Lett.,
2003, 3, 955–960.
PFA is a research staff and SS is a research fellow from
CONICET. The work was performed under support from
CONICET (PIP 11220100100397) and UBA (grant number:
20020100100234). SS acknowledges ELAP (Emerging Leaders
in the Americas Program) for the DFAIT fellowship that
supported her visit to Canada. We thank Prof. Juan C. Scaiano
(University of Ottawa) for helpful suggestions and for providing
the facility used to perform the laser flash photolysis experi-
ments and to synthesize the ‘semi-naked’ gold nanoparticles.
22 S. Hagen, P. Kate, M. V. Peters, S. Hecht, M. Wolf and
P. Tegeder, Appl. Phys. A: Mater. Sci. Process., 2008, 93,
253–260.
23 U. Jung, O. Filinova, S. Kuhn, D. Zargarani, C. Bornholdt,
R. Herges and O. Magnussen, Langmuir, 2010, 26,
13913–13923.
24 T. Solomun, K. Christmann and H. Baumgaertel, J. Phys.
Chem., 1989, 93, 7199–7208.
25 E. R. McNellis, J. Meyer and K. Reuter, Phys. Rev. B: Condens.
Matter Mater. Phys., 2009, 80, 205414.
Notes and references
26 M. E. Bartram and B. E. Koel, Surf. Sci., 1989, 213, 137–156.
27 W. Dozier, J. Drake and J. Klafter, Phys. Rev. Lett., 1986, 56,
197–200.
1 R. Klajn, J. F. Stoddart and B. A. Grzybowski, Chem. Soc.
Rev., 2010, 2039, 2203–2237.
2 Y. B. Zheng, Y.-W. Yang, L. Jensen, L. Fang, B. K. Juluri,
A. H. Flood, P. S. Weiss, J. F. Stoddart and T. J. Huang, Nano
Lett., 2009, 9, 819–825.
3 S. J. van der Molen, J. Liao, T. Kudernac, J. S. Agustsson,
L. Bernard, M. Calame, B. J. van Wees, B. L. Feringa and
C. Schönenberger, Nano Lett., 2008, 9, 76–80.
4 J. H. Yoon and S. Yoon, Phys. Chem. Chem. Phys., 2011, 13,
12900–12905.
28 A. van Blaaderen and A. Vrij, J. Colloid Interface Sci.,
1993, 156, 1–18.
29 J. Turkevich, P. C. Stevenson and J. Hillier, Discuss. Faraday
Soc., 1951, 11, 55–75.
30 K. L. McGilvray, J. Granger, M. Correia, J. T. Banks and
J. C. Scaiano, Phys. Chem. Chem. Phys., 2011, 13, 11914–11918.
31 C. Graf, D. L. J. Vossen, A. Imhof and A. van Blaaderen,
Langmuir, 2003, 19, 6693–6700.
5 R. Klajn, K. J. M. Bishop and B. A. Grzybowski, Proc. Natl.
Acad. Sci. U. S. A., 2007, 104, 10305–10309.
32 W. Stöber, A. Fink and E. Bohn, J. Colloid Interface Sci.,
1968, 26, 62–69.
This journal is © The Royal Society of Chemistry 2015
Catal. Sci. Technol.