a7 nAChR agonist PHA-543613
Journal of Medicinal Chemistry, 2006, Vol. 49, No. 14 4435
(6) (a) Guan, Z. Z.; Zhang, X.; Blennow, K.; Nordberg, A. Decreased
Protein Level of Nicotinic Receptor R7 Subunit in the Frontal Cortex
from Schizophrenic Brain. NeuroReport 1999, 10, 1779-1782. (b)
Court, J.; Spurden, D.; Lloyd, S.; McKeith, I.; Ballard, C.; Cairns,
N.; Kerwin, R.; Perry, R.; Perry, E. Neuronal Nicotinic Receptors in
Dementia with Lewy Bodies and Schizophrenia: R-Bungarotoxin
and Nicotine Binding in the Thalamus. J. Neurochem. 1999, 73,
1590-1597.
(7) Freedman, R.; Coon, H.; Myles-Worsley, M.; Orr-Urtreger, A.;
Olincy, A.; Davis, A.; Polymeropoulos, M.; Holik, J.; Hopkins, J.;
Hoff, M.; Rosenthal, J.; Waldo, M. C.; Reimherr, F.; Wender, P.;
Yaw, J.; Young, D. A.; Breese, C. R.; Adams, C.; Patterson, D.;
Adler, L. E.; Kruglyak, L.; Leonard, S.; Byerley, W. Linkage of a
Neurophysiological Deficit in Schizophrenia to a Chromosome 15
Locus. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 587-592.
(8) Adler, L. E.; Hoffer, L. D.; Wiser, A.; Freedman, R. Normalization
of Auditory Physiology by Cigarette Smoking in Schizophrenic
Patients. Am. J. Psychiatry 1993, 150, 1856-1861.
(9) Goff, D. C.; Henderson, D. C.; Amico, E. Cigarette Smoking in
Schizophrenia: Relationship to Psychopathology and Medication Side
Effects. Am. J. Psychiatry 1992, 149, 1189-1194.
(10) Ripoll, N.; Bronnec, M.; Bourin, M. Nicotinic Receptors and
Schizophrenia. Curr. Med. Res. Opin. 2004, 20, 1057-74.
(11) (a) Stevens, K. E.; Wear, K. D. Normalizing Effects of Nicotine and
a Novel Nicotinic Agonist on Hippocampal Auditory Gating in Two
Animal Models. Pharmacol., Biochem. BehaV. 1997, 57, 869-874.
(b) Stevens, K. E.; Kem, W. R.; Mahnir, V. M.; Freedman, R.
Selective R7-Nicotinic Agonists Normalize Inhibittion of Auditory
Response in DBA Mice. Psychopharmacology 1998, 136, 320-327.
(12) Hajo´s, M.; Hurst, R. S.; Hoffmann, W. E.; Krause, M.; Wall, T. M.;
Higdon, N. R.; Groppi, V. E. The Selective R7 nAChR Agonist PNU-
282,987 Enhances GABAergic Synaptic Activity in Brain Slices and
Restores Auditory Gating Deficits in Anesthetized Rats. J. Pharma-
col. Exp. Ther. 2005, 312, 1213-1222.
(13) Kitagawa, H.; Takenouchi, T.; Azuma, R.; Wesnes, K. A.; Kramer,
W. G.; Clody, D. E.; Burnett, A. L. Safety, pharmacokinetics, and
effects on cognitive function of multiple doses of GTS-21 in healthy,
male volunteers. Neuropsychopharmacology 2003, 28, 542-551.
(14) Nagamoto, H. T.; Adler, L. E.; McRae, K. A.; Huettl, P.; Cawthra,
E.; Gerhardt, G.; Hea, R.; Griffith, J. Auditory P50 in Schizophrenics
on Clozapine: Improved Gating Parallels Clinical Improvement and
Changes in Plasma 3-Methoxy-4-hydroxyphenyl-glycol. Neuropsy-
chobiology 1999, 39, 10-17.
(15) Reviews: (a) Jensen, A. A.; Frolund, B.; Liljefors, T.; Krogsgaard-
Larsen, P. Neuronal Nicotinic Acetylcholine Receptors: Structural
Revelations, Target Identifications, and Therapeutic Inspirations. J.
Med. Chem. 2005, 48, 4705-4745. (b) Hashimoto, K.; Koike, K.;
Shimizu, E.; Iyo, M. R7 nicotinic receptor agonists as potential
therapeutic drugs for schizophrenia. Curr. Med. Chem. 2005, 5, 171-
184. (c) Bunnelle, W. H.; Dart, M. J.; Schrimpf, M. R. Design of
Ligands for the Nicotinic Acetylcholine Receptors: The Quest for
Selectivity. Curr. Med. Chem. 2004, 4, 299-334. (d) Romanelli, M.
N.; Gualtieri, F. Cholinergic Nicotinic Receptors: Competitive
Ligands, Allosteric Modulators, and Their Potential Applications.
Med. Res. ReV. 2003, 23, 393-426. (e) Astles, P. C.; Baker, S. R.;
Boot, J. R.; Broad, L. M.; Dell, C. P.; Keenan, M. Recent Progress
in the Development of Subtype Selective Nicotinic Acetylcholine
Receptor Ligands. Curr. Drug Targets: CNS Neurol. Disord. 2002,
1, 337-348. (f) Schmitt, J. D. Exploring the Nature of Molecular
Recognition in Nicotinic Acetylcholine Receptors. Curr. Med. Chem.
2000, 7, 749-800. Also see references cited within these papers.
(16) (a) Meyer, E. M.; Tay, E. T.; Papke, R. L.; Meyers, C.; Huang, G.-
L.; De Fiebre, C. M. 3-[2,4-Dimethoxybenzylidene]anabaseine
(DMXB) selectively activates rat alpha 7 receptors and improves
memory-related behaviors in a mecamylamine-sensitive manner.
Brain Res. 1997, 768, 49-56. (b) deFiebre, C. M.; Meyer, E. M.;
Henry, J. C.; Muraskin, S. I.; Kem, W. R.; Papke, R. L. Characteriza-
tion of a series of anabaseine-derived compounds reveals that the
3-(4)-dimethylaminocinnamylidine derivative is a selective agonist
at neuronal nicotinic alpha7/125I-bungarotoxin receptor subtypes.
Mol. Pharmacol. 1995, 47, 164-171.
(18) (a) Macor, J.; Wu, E. Azabicyclic Esters of Carbamic Acids Useful
in Therapy. PCT Int. Appl. WO9730998, August 28, 1997. (b)
Guendisch, D.; Andrae, M.; Munoz, L.; Tilotta, M. C. Synthesis and
evaluation of phenylcarbamate derivatives as ligands for nicotinic
acetylcholine receptors. Bioorg. Med. Chem. 2004, 12, 4953-4962.
(19) Bodnar, A. L.; Cortes-Burgos, L. A.; Cook, K. K.; Dinh, D. M.;
Groppi, V. E.; Hajos, M.; Higdon, N. R.; Hoffmann, W. E.; Hurst,
R. S.; Myers, J. K.; Rogers, B. N.; Wall, T. M.; Wolfe, M. L. Wong,
E. Discovery and SAR of Quiniclidine Benzamides as Agonists of
R7 Nicotinic Acetylcholine Receptors. J. Med. Chem. 2005, 48, 905-
908.
(20) Tatsumi, R.; Seio, K.; Fujio, M.; Katayama, J.; Horikawa, T.;
Hashimoto, K.; Tanaka, H. (+)-3-[2-(Benzo[b]thiophen-2-yl)-2-
oxoethyl]-1-azabicyclo[2.2.2]octane as potent agonists for the R7
nicotinic acetylcholine receptor. Bioorg. Med. Chem. Lett. 2004, 14,
3781-3784.
(21) Biton, B.; Bergis, O. E.; Galli, F.; Nedelec, A.; Lochead, A.; Jegham,
S.; Lanneau, C.; Granger, P.; Leonardon, J.; Avenet, P.; Godet, D.;
Coste, A.; Vig, X.; Oury-Donat, F.; George, P.; Soubri, P.; Griebel,
G.; Scatton B. SSR180711A, A novel selective R7 nicotinic receptor
partial agonist. I. Binding profile and in vitro functional characteriza-
tion. Presented at the 34th Annual Neuroscience Meeting, San Diego,
California, October 23-27, 2004; Abstract 583.1.
(22) See Supporting Information for full experimental details.
(23) (a) Wishka, D. G.; Reitz, S. C.; Piotrowski, D. W.; Groppi, V. E.,
Jr. WO 2002/100857, 2002. (b) Walker, D. P.; Wishka, D. G.;
Corbett, J. W.; Rauckhorst, M. R.; Piotrowski, D. W.; Groppi, V. E.
WO 2002/100858, 2002. (c) Walker, D. P.; Piotrowski, D. W.;
Jacobsen, E. J.; Acker, B. A.; Groppi, V. E. WO 2003/070731, 2003.
(d) Rogers, B. N.; Piotrowski, D. W.; Walker, D. P.; Jacobsen, E. J.;
Acker, B. A.; Wishka, D. G.; Groppi, V. E. WO 2003/070732, 2003.
(24) The R7 5HT3 chimera assay was previously established as predictive
of native R7 nAChR activity; see refs 12 and 19.
(25) Kalgutkar, A. S.; Gardner, I.; Obach, R. S.; Shaffer, C. L.; Callegari,
E.; Henne, K.; Mutlib, A.; Dalvie, D.; Lee, J.; Nakai, Y.; O’Donnell,
J.; Boer, J.; Harriman, S. A Comprehensive Listing of Bioactivation
Pathways of Organic Functional Groups. Curr. Drug Metab. 2005,
6, 161-225.
(26) Sirota, P.; Mosheva, T.; Shabtay, H.; Giladi, N.; Korczyn, A. D. Use
of the Selective Serotonin 3 Receptor Antagonist Ondansetron in the
Treatment Of Neuroleptic-induced Tardive Dyskinesia. Am. J.
Psychiatry 2000, 157, 287-289.
(27) (a) Viskin, S. Long QT Syndromes and Torsade de Pointes. Lancet
1999, 354, 1625-1633. (b) Mitcheson, J. S.; Chen, J.; Lin, M.;
Culberson, C.; Sanguinetti, M. C. A Structural Basis for Drug-Induced
Long QT Syndrome. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 12329-
12333.
(28) Compounds screened in Chan Test, hERG Block Comparitor Screen.
(29) Sanguinetti, M. C.; Mitcheson, J. S. Predicting Drug-hERG Channel
Interactions That Cause Acquired Long QT Syndrome. Trends
Pharmacol. Sci. 2005, 26, 119-124.
(30) Soglia, J. R.; Harriman, S. P.; Zhao, S.; Barberia, J.; Cole, M. J.;
Boyd, J. G.; Contillo, L. G. The Development of a Higher Throughput
Reactive Intermediate Screening Assay Incorporating Microbore
Liquid Chromatography Microelectrospray Ionization Tandem Mass
Spectrometry and Glutathione Ethyl Ester as an in vitro Conjugating
Agent. J. Pharm. Biomed. Anal. 2004, 36, 105-116.
(31) (a) See Supporting Information for LC/MS/MS analysis of NADPH-
supplemented human liver microsomal incubations containing 13 and
GSH-EE, and for the molecular weight of this conjugate.
(32) Baillie, T. A.; Davis, M. R. Mass spectrometry in the analysis of
glutathione conjugates. Biol. Mass Spectrom. 1993, 22, 319-325.
(33) Dalvie, D. K.; Kalgutkar, A. S.; Khojasteh-Bakht, S. C.; Obach, R.
S.; O’Donnell, J. P. Biotransformation reactions of five-membered
aromatic heterocyclic rings. Chem. Res. Toxicol. 2002, 15, 269-
299.
(34) Garberg, P.; Ball, M.; Borg, N.; Cecchelli, R.; Fenart, L.; Hurst, R.
D.; Lindmark, T.; Mabondzo, A.; Nilsson, J. E.; Raub, T. J.;
Stanimirovic, D.; Terasaki, T.; Oeberg, J.-O.; Oesterberg, T. In Vitro
Models for the Blood-Brain Barrier. Toxicol. in Vitro 2005, 19, 299-
334.
(35) Seguela, P.; Wadiche, J.; Dineley-Miller, K.; Dani, J. A.; Patrick, J.
W. Molecular Cloning, Functional Properties, and Distribution of
Rat Brain R7: A Nicotinic Cation Channel Highly Permeable to
Calcium. J. Neurosci. 1993, 13, 596-604.
(17) Mullen, G.; Napier, J.; Balestra, M.; DeCory, T.; Hale, G.; Macor,
J.; Mack, R.; Loch, J.; Wu, E.; Kover, A.; Verhoest, P.; Sampognaro,
A.; Phillips, E.; Zhu, Y.; Murray, R.; Griffith, R.; Blosser, J.; Gurley,
D.; Machulskis, A.; Zongrone, J.; Rosen, A.; Gordon, J. (-)-Spiro-
[1-azabi-cyclo[2.2.2]octane-3,5′-oxazolidin-2′-one], a Conformation-
ally Restricted Analog of Acetylcholine, Is a Highly Selective Full
Agonist at the R7 Nicotinic Acetylcholine Receptor. J. Med. Chem.
2000, 43, 4045-4050.
(36) Compound 14 was screened against a panel of 90 receptors, channels,
and enzymes at CEREP and found to have no additional activities.22
(37) Krause, M.; Hoffmann, W. E.; Hajos, M. Auditory Sensory Gating
in Hippocampus and Reticular Thalamic Neurons in Anaesthetized
Rats. Biol. Psychiatry 2003, 53, 244-253.
(38) (a) Ellenbroek, B. A.; de Bruin, N. M.; van Den Kroonenburg, P.
T.; van Luijtelaar, E. L.; Cools, A. The effects of early maternal
deprivation on auditory information processing in adult Wistar rats.