European Journal of Organic Chemistry
10.1002/ejoc.201601587
COMMUNICATION
O
Acknowledgements
tBuO2C
tBuO2C
t
BuO C
2
O
We thank Dr. B. Kariuki, Cardiff University, for the X-ray analysis
of compound 2a. Support from the School of Chemistry, Cardiff
University, is gratefully acknowledged. We thank the EPSRC
National Mass Spectrometry Facility, Swansea, for mass
spectrometric data.
4
5
58
70
1:4
1:4
OAc
1
1
1
2
tBuO C
O
2
tBuO2C
tBuO2C
O
Keywords: cyclization • hypervalent iodine reagents •
1
3
OAc
1
4
lactonization • malonate derivatives
[
a] 1.5 eq. PhI(OAc)
2
, 2 eq. BF
3
• OEt
2
, 12.5 eq. AcOH, –20 ºC, 20 h. [b] 2.5
eq. PhI(OAc)
determined.
2
, 4 eq. BF OEt ,
3
•
2
25 eq. AcOH, –20 ºC, 20 h. [c] Not
[1]
a) Hypervalent Iodine Chemistry, Ed. T. Wirth, (Topics in Current
Chemistry), Springer, Berlin, 2016, vol. 373. b) V. V. Zhdankin,
Hypervalent Iodine Chemistry, Wiley, Chichester, 2014.
The mono-allylated dimethyl malonate 6 gave compound 7
in 61% yield and with a diastereomeric ratio of 1.3:1 (Table 3,
Entry 1). The cyclization also proceeded with the di-allylated
substrate 8. As two carbon-carbon double bonds and two esters
are present in compound 8 the amounts of reagents were
increased and the double cyclized spiro product 9 was isolated
in 15% yield as the major product (Table 3, Entry 2). Even if the
substrate contains one hydrolyzed ester group as in 10 there
seems to be no apparent advantage for the cyclization. Two
different cyclized products were formed during the reaction, one
with the addition of a hydroxyl group onto the double bond (2b,
[
2]
3]
T. Wirth, Angew. Chem. Int. Ed. 2005, 44, 3656-3665.
[
a) R. Kumar, T. Wirth, Top. Curr. Chem. 2016, 373, 243-261; b) F.
Berthiol, Synthesis 2015, 47, 587-603; c) F. V. Singh, T. Wirth, Chem.
Asian J. 2014, 9, 950-972; d) A. Parra, S. Reboredo, Chem. Eur. J.
2
013, 19, 17244-17260; e) U. Farid, T. Wirth, in Asymmetric Synthesis
– The Essentials, Eds.: S. Bräse, C. Christmann, Wiley VCH, 2012,
197-203; f) H. Liang, M. A. Ciufolini, Angew. Chem. Int. Ed. 2011, 50,
11849-11851; g) M. Ngatimin, D. W. Lupton, Aust. J. Chem. 2010, 63,
6
53-658.
a) S. M. Altermann, S. Schäfer, T. Wirth, Tetrahedron 2010, 66, 5902-
907; b) V. V. Zhdankin, J. T. Smart, P. Zhao, P. Kiprof, Tetrahedron
[
4]
5]
5
Lett. 2000, 41, 5299-5302; c) H. Tohma, S. Takizawa, H. Watanabe, Y.
Fukuoka, T. Maegawa, Y. Kita, J. Org. Chem. 1999, 64, 3519-3523; d)
D. G. Ray, G. F. Koser, J. Am. Chem. Soc. 1990, 112, 5672-5673; e) T.
Imamoto, H. Koto, Chem. Lett. 1986, 967-968.
1
3%) and the other one with an acetoxy moiety (2a, 28% yield)
(
Table 3, Entry 3).
Di-tert-butyl malonate derivatives can be used similarly well.
[
a) A. M. Harned, Tetrahedron Lett. 2014, 55, 4681-4689; b) K. A. Volp,
A. M. Harned, Chem. Commun. 2013, 49, 3001-3003; c) M. Uyanik, T.
Yasui, K. Ishihara, Angew. Chem. Int. Ed. 2013, 52, 9215-9218; d) T.
Dohi, N. Takenaga, T. Nakae, Y. Toyoda, M. Yamasaki, M. Shiro, H.
Fujioka, A. Maruyama, Y. Kita, J. Am. Chem. Soc. 2013, 135, 4558-
4566; e) S. Quideau, G. Lyvinec, M. Marguerit, K. Bathany, A. Ozanne-
Beaudenon, T. Buffeteau, D. Cavagnat, A. Chénedé, Angew. Chem. Int.
Ed. 2009, 48, 4605-4609.
Substrate 11 gave the desired cyclized product 12 in reasonable
yield (58%) and with moderate selectivity (d.r. = 4:1) (Table 3,
Entry 4). The mono-allylated di-tert-butyl malonate 13 led to the
cyclized product 14 in good yield (70%) but with only moderate
selectivity of 4:1 (Table 3, Entry 5). The stereochemistry of the
major isomer (cis) was determined by a NOESY experiment
(
see supporting information).
[6]
a) M. Brown, M. Delorme, F. Malmedy, J. Malmgren, B. Olofsson, T.
Wirth, Synlett 2015, 26, 1573-1577; b) V. K. Aggarwal, B. Olofsson,
Angew. Chem. Int. Ed. 2005, 44, 5516-5519; c) M. Ochiai, Y. Kitagawa,
N. Takayama, Y. Takaoka, M. Shiro, J. Am. Chem. Soc. 1999, 121,
The substitution of (diacetoxyiodo)benzene with a chiral
[
21]
derivative did not lead to any cyclization product, probably due
to reduced reactivity of the chiral reagent.
9
233-9234.
In conclusion, several malonate derivatives were
successfully cyclized to highly functionalized lactones with
moderate to good diastereoselectivities.
[7]
a) B. Basdevant, C. Y. Legault, J. Org. Chem. 2015, 80, 6897-6902; b)
B. Basdevant, C. Y. Legault, Org. Lett. 2015, 17, 4918-4921; c) P.
Mizar, T. Wirth, Angew. Chem. Int. Ed. 2014, 53, 5993-5997; d) U.
Farooq, S. Schäfer, A.-H. Shah, D. Freudendahl, T. Wirth, Synthesis
2
010, 2010, 1023-1029; e) S. M. Altermann, R. D. Richardson, T. K.
Page, R. K. Schmidt, E. Holland, U. Mohammed, S. M. Paradine, A. N.
French, C. Richter, A. M. Bahar, B. Witulski, T. Wirth, Eur. J. Org.
Chem. 2008, 5315-5328; f) R. Richardson, T. Page, S. Altermann, S.
Paradine, A. French, T. Wirth, Synlett 2007, 538-542; E. Hatzigrigoriou,
A. Varvoglis, M. Bakola-Christianopoulou, J. Org. Chem. 1990, 55, 315-
318.
Experimental Section
PhI(OAc)
2
(108 mg, 0.340 mmol) was dissolved in dry dichloromethane
(
2 mL) under argon and the reaction was cooled down to –20 °C. BF •
3
2
OEt (70 µL, 0.56 mmol) and AcOH (200 µL, 3.5 mmol) was then added
and the resulting mixture was stirred for 5 min. A solution of starting
material (0.28 mmol) in dry dichloromethane (2 mL) was then added and
the resulting mixture was stirred for 19 h at –20 °C. The reaction was
quenched with sat. aq. solution of sodium bicarbonate (0.5 mL) and the
organic phase was extracted with dichloromethane (3 x 5 mL). The
[8]
a) T. Takesue, M. Fujita, T. Sugimura, H. Akutsu, Org. Lett. 2014, 16,
4634-4637; b) M. Shimogaki, M. Fujita, T. Sugimura, Eur. J. Org. Chem.
2013, 7128-7138; c) M. Fujita, K. Mori, M. Shimogaki, T. Sugimura, Org.
Lett. 2012, 14, 1294-1297; d) M. Fujita, Y. Yoshida, K. Miyata, A.
Wakisaka, T. Sugimura, Angew. Chem. Int. Ed. 2010, 49, 7068-7071;
e) M. Fujita, Y. Ookubo, T. Sugimura, Tetrahedron Lett. 2009, 50,
1298-1300; f) M. Fujita, S. Okuno, H. J. Lee, T. Sugimura, T. Okuyama,
Tetrahedron Lett. 2007, 48, 8691-8694; g) U. H. Hirt, M. F. H. Schuster,
®
combined organic layers were dried through a Telos phase separator
and concentrated under vacuum. The pure product was obtained after
purification by column chromatography (0 to 30% EtOAc in hexane).
This article is protected by copyright. All rights reserved.