Scheme 1. Synthesis of Aldehyde 5
protection of the resulting alcohol as the PMB ether
followed by oxidative cleavage of the olefin gave the
requisite aldehyde 5.
Further elaboration of the left-hand portion of the alkyne
required the synthesis of enone 4 (Scheme 2). Asymmetric
desymmetrization of 1,3-diol 8 using catalytic diethylzinc
(S,S)-ProPhenol generated the enantioenriched mono-
benzoylated product 9 in quantitative yield and high
enantioselectivity.10 Enzymatic desymmetrizations of 8
have proven particularly challenging, and only the (R)-
enantiomer of monoacetylated 8 can be obtained enzy-
matically in high enantioselectivity via monohydrolysis of
the bisacetate substrate.12 Our desymmetrization meth-
od, however, delivers either enantiomer of 9 in good yield
and enantioselectivity simply by switching the enantio-
mer of catalyst. Subsequent oxidation of 9 to the beta-
benzoylaldehyde, followed by immediate treatment with
carbon tetrabromide and triphenylphosphine furnished
dibromoolefin 10 without observable epimerization of
the ethyl stereocenter or byproducts arising from
β-elimination. Our original synthetic studies (see the Sup-
porting Information) led us to believe that the desymme-
trization reaction with (S,S)-ProPhenol generated the
desired (R)-stereochemistry at the ethyl center. However,
when the spectra of our final product did not match those
of the natural product, we then obtained a crystal structure
of dibromide 10, which confirmed that we obtained the (S)-
stereochemistry, as depicted in Scheme 2, leading ultimately
to the epimeric stereocenter to that of the natural product.
Nevertheless, ent-9 (characterized as the dibromide ent-10)
was obtained with the same level of enantioselectivity but
opposite in configuration when (R,R)-ProPhenol was em-
ployed, verifying that the natural product could be obtained
with equal ease through our synthetic route.
Figure 1. Retrosynthetic analysis of (þ)-peloruside A.
by an asymmetric desymmetrization reaction of meso 1,3-
diols previously developed in our laboratory.10 We hy-
pothesized that alkyne 5 could be readily accessed by the
sequential treatment of the dianion of isopropylacetylene
(our alkyne linchpin) with two different electrophiles,
thereby taking advantage of the differential reactivity of
the propargylic and acetylenic anions.
In the forward sense, treatment of commercially avail-
ablealkyne 6with2 equivofn-butyllithium toformthe 1,3-
dilithiated intermediate, followed by sequential trapping
with N,N-dimethylformamide and chlorotriethylsilane, gave
aldehyde 7 in good yield in a single transformation
(Scheme 1). Allylation with (ꢀ)-Ipc2B(allyl)borane pro-
vided the desired alcohol in high enantioselectivity,11 and
(7) (a) Wilmes, A.; Bargh, K.; Kelly, C.; Northcote, P. T.; Miller,
J. H. Mol. Pharmaceutics 2007, 4, 269–280. (b) Khrapunovich-Baine,
M.; Menon, V.; Yang, C.-P. H.; Northcote, P. T.; Miller, J. H.;
Angeletti, R. H.; Fiser, A.; Horwitz, S. B.; Xiao, H. J. Biol. Chem.
2011, 286, 11765–11778.
(8) (a) Liao, X.; Wu, Y.; De Brabander, J. K. Angew. Chem., Int. Ed.
2003, 42, 1648. (b) Jin, M.; Taylor, R. E. Org. Lett. 2005, 7, 1303–1305. (c)
Ghosh, A. K.; Xu, X.; Kim, J.-H.; Xu, C.-X. Org. Lett. 2008, 10, 1001. (d)
Evans, D. A.; Welch, D. S.; Speed, A. W. H.; Moniz, G. A.; Reichelt, A.;
Ho, S. J. Am. Chem. Soc. 2009, 131, 3840. (e) Hoye, T. R.; Jeon, J.; Kopel,
L. C.; Ryba, T. D.; Tennakoon, M. A.; Wang, Y. Angew. Chem., Int. Ed.
2010, 49, 6151. (f) McGowan, M. A.; Stevenson, C. P.; Schiffler, M. A.;
Jacobsen, E. N. Angew. Chem., Int. Ed. 2010, 49, 6147–6150.
(9) For selected additional independent synthetic studies, see: (a)
Zimmerman, N.; Pinard, P.; Carboni, B.; Gosselin, P.; Gaulon-Nourry,
ꢀ
C.; Dujardin, G.; Collet, S.; Lebreton, J.; Mathe-Allainmat, M. Eur. J.
Org. Chem. 2013, 2303–2315. (b) Wullschleger, C. W.; Gertsch, J.;
Altmann, K.-H. Chem.;Eur. J. 2013, 19, 13105–13111. (c) Zhao, Z.;
Taylor, R. E. Org. Lett. 2012, 14, 669–671. (d) Gazaille, J. A.; Abramite,
J. A.; Sammakia, T. Org. Lett. 2012, 14, 178–181. (e) Wullschleger,
C. W.; Gertsch, J.; Altmann, K.-H. Org. Lett. 2010, 12, 1120–1123. (f)
Smith, A. B., III; Cox, J. M.; Furuichi, N.; Kenesky, C. S.; Zheng, J.;
Atasoylu, O.; Wuest, W. M. Org. Lett. 2008, 10, 5501–5504. (g) Casey,
E. M.; Teesdale-Spittle, P.; Harvey, J. E. Tetrahedron Lett. 2008, 49,
7021–7023. (h) Chen, Z.-L.; Zhou, W.-S. Tetrahedron Lett. 2006, 47,
5289–5292. (i) Roulland, E.; Ermolenko, M. S. Org. Lett. 2005, 7, 2225–
2228. (j) Owen, R. M.; Roush, W. R. Org. Lett. 2005, 7, 3941–3944. (k)
Gurjar, M. K.; Pedduri, Y.; Ramana, C. V.; Puranik, V. G.; Gonnade,
R. G. Tetrahedron Lett. 2004, 45, 387–390. (l) Engers, D. W.; Bassindale,
M. J.; Pagenkopf, B. L. Org. Lett. 2004, 6, 663–666. (m) Paterson, I.; Di
The conversion of dibromide 10 to enone ent-4 was
accomplished in a single step using a method developed
by Miyashita and co-workers.13 Treatment of 10 with
dimethyl cuprate led to selective methylation of the less
hindered bromide and formation of a (Z)-vinyl cuprate
intermediate. Quenching with acetyl bromide provided the
desired product. Retaining the geometrical integrity of the
alkene in this process proved quite challenging. Key to its
€
(12) (a) Gaucher, A.; Ollivier, J.; Marguerite, J.; Paugam, R.; Salaun,
€
Francesco, M. E.; Kuhn, T. Org. Lett. 2003, 5, 599–602.
J. Can. J. Chem. 1994, 72, 1312–1327. (b) Izquierdo, I.; Plaza, M. T.;
(10) (a) Trost, B. M.; Malhotra, S.; Mino, T.; Rajapaksa, N. S.
Chem.;Eur. J. 2008, 14, 7648–7657. (b) Trost, B. M.; Mino, T. J. Am.
Chem. Soc. 2003, 125, 2410–2411.
(11) The assignment of the absolute stereochemistry for the allylation
derives from well-established precedent: Jadhav, P. K.; Bhat, K. S.;
Perumal, P. T.; Brown, H. C. J. Org. Chem. 1986, 51, 432–439. See also:
Trost, B. M.; Dong, G. Nature 2008, 456, 485–488.
Rodrı
(c) Mirilashvili, S.; Chasid-Rubinstein, N.; Albeck, A. Eur. J. Org.
Chem. 2010, 4671–4686. For reviews, see: (d) Garcıa-Urdiales, E.;
Alfonso, I.; Gotor, V. Chem. Rev. 2005, 105, 313–354. (e) Enrıquez-
´
guez, M.; Tamayo, J. Tetrahedron: Asymmetry 1999, 10, 449–455.
´
´
ꢀ
Garcıa, A.; Kundig, E. P. Chem. Soc. Rev. 2012, 41, 7803–7831.
´
€
(13) Tanino, K.; Arakawa, K.; Satoh, M.; Iwata, Y.; Miyashita, M.
Tetrahedron Lett. 2006, 47, 861–864.
B
Org. Lett., Vol. XX, No. XX, XXXX