Koszarna and Gryko
a mixture of various aldehyde-pyrrole oligocondensates, in-
cluding bilane (tetrapyrrane), a direct precursor of corrole. The
second step is the oxidative ring closure. Maximizing bilane
formation while minimizing the formation of dipyrromethanes
decrease in the yield of dipyrromethanes, probably due to the
formation of higher oligocondensates. This could be attributed
to the better solubility of dipyrromethanes in H2O/MeOH
mixtures, which permits further reaction. We reasoned that
careful optimization of the aldehyde/pyrrole ratio in conjunction
with the amount of MeOH might be a perfect way for narrowing
the distribution of oligocondensates and, thus, open the way to
a more efficient synthesis of corroles. Here we describe the
synthesis of A3-corroles as well as trans-A2B-corroles in an
H2O/MeOH mixture, which resulted from this study.
(DPMs), tripyrrane, and higher oligocondensates, is a difficult
task due to the similar reactivity of all these compounds. An
independent improvement of both processes (i.e., bilane forma-
tion and its macrocyclization) is the key to success, but the
optimization of the first step seems to be more crucial. Initial
attempts concentrated on the fine-tuning of the reaction condi-
8
c
tions, depending on the reactivity of various aldehydes.
Although these results were satisfactory (especially for alde-
hydes with electron-withdrawing groups), there was still room
Results and Discussion
A3-Corroles. Model Optimization Study. The reaction of
benzaldehyde (1) with pyrrole was chosen as a model system
for the optimization study because the yield of corrole 5 can be
easily compared with several existing procedures (Scheme 1).
The highest yield of corrole 5 (17%) has been reported by
for further improvements. The inspiration for this work came
from an intriguing paper by Kral and co-workers,10 describing
the synthesis of dipyrromethanes in water. The authors took
advantage of the difference in water solubility between the
substrates (aldehyde, pyrrole) and the product (dipyrromethane).
Exploiting this solubility difference, it was possible to essentially
stop the reaction at the dipyrromethane level using only a 6-fold
excess of pyrrole. Furthermore, the authors briefly mentioned
that the addition of MeOH to the reaction mixture led to a
8
1
1
8
d
Paolesse and co-workers. On the basis of the paper by Kral
1
0
et al., we chose the following initial conditions for the first
acid-catalyzed step: [ald. 1] ) 18 mM; ald. 1/pyrrole ) 3:4;
[HCl] ) 0.12 M; H2O/MeOH ) 1:1 (Table 1, entry 1).
Benzaldehyde (1) reacted with pyrrole under these conditions
to give a pink suspension of oligocondensates. These products
were extracted with CH2Cl2 and oxidized with DDQ. Though
(
1) (a) Paolesse, R. In The Porphyrin Handbook; Kadish, K. M., Smith,
K. M., Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 2, pp
01-232. (b) Montforts, F.-P.; Glasenapp-Breiling, M.; Kusch, D. In
2
4
g
Geier and co-workers showed that DDQ is not the best
oxidizing agent for the synthesis of triphenylcorrole 5 because
it causes its partial decomposition, it was chosen in our study
for convenience (reaction with p-chloranil required a much
longer time). The use of DDQ would certainly decrease the
yields in comparison to p-chloranil, but the relative differences
in the yields between reactions under different conditions would
remain the same.
Under the reaction conditions initially chosen, corrole 5 was
obtained in a reasonable 14% yield. Initially we concentrated
our efforts on examining the influence of the benzaldehyde (1)/
pyrrole ratio on the yield of corrole 5 (Table 1, entries 1-3).
The best yield (21%) was obtained when the ratio was 1:2 (Table
Houben-Weyl Methods of Organic Chemistry; Schaumann, E., Ed.; Thi-
eme: Stuttgart, Germany, New York, 1998; Vol. E9d, pp 665-672. (c)
Gryko, D. T. Eur. J. Org. Chem. 2002, 1735-1742. (d) Guilard, R.; Barbe,
J.-M.; Stern, C.; Kadish, K. M. In The Porphyrin Handbook; Kadish, K.
M., Smith, K. M., Guilard R., Eds.; Elsevier Science: New York, 2003;
Vol. 18, pp 303-351. (e) Gryko, D. T.; Fox, J. P.; Goldberg, D. P. J.
Porphyrins Phthalocyanines 2004, 8, 1091-1105. (f) Nardis, S.; Monti,
D.; Paolesse, R. Mini ReV. Org. Chem. 2005, 2, 355-372.
(
2) (a) Meier-Callahan, A. E.; Di Bilio, A. J.; Simkhovich, L.; Maha-
mmed, A.; Goldberg, I.; Gray, H. B.; Gross, Z. Inorg. Chem. 2001, 40,
788-6793. (b) Gross, Z. J. Biol. Inorg. Chem. 2001, 6, 733-738. (e)
Ramdhanie, B.; Stern, C. L.; Goldberg, D. P. J. Am. Chem. Soc. 2001,
23, 9447-9448. (b) Edwards, N. Y.; Eikey, R. A.; Loring, M. I.; Abu-
6
1
Omar, M. M. Inorg. Chem. 2005, 44, 3700-3708. (b) Joseph, C. A.; Ford,
P. C. J. Am. Chem. Soc. 2005, 127, 6737-6743. (c) Collman, J. P.; Wang,
H. J. H.; Decr e´ au, R. A.; Eberspacher, T. A.; Sunderland, C. J. Chem.
Commun. 2005, 2497-2499.
1
, entry 2). Hence, for further reactions, it was kept constant at
(3) (a) Ding, T.; Alem a´ n, E. A.; Modarelli, D. A.; Ziegler, C. J. J. Phys.
Chem. A 2005, 109, 7411-7417. (b) Ventura, B.; Esposti, A. D.; Koszarna,
this value. Subsequently, solvent effects were investigated by
replacing MeOH with other water-miscible, polar solvents such
as i-PrOH, CH3CN, DMF, and THF.
We observed that bilanes were formed in negligible amounts
in all solvents studied, and only traces of corrole 5 were detected
B.; Gryko, D. T.; Flamigni, L. New J. Chem. 2005, 29, 1559-1566.
(
4) (a) Gross, Z.; Galili, N.; Saltsman, I. Angew. Chem., Int. Ed. 1999,
3
8, 1427-1429. (b) Paolesse, R.; Nardis, S.; Sagone, F.; Khoury, R. G. J.
Org. Chem. 2001, 66, 550-556. (c) Bri n˜ as, R. P.; Br u¨ ckner, C. Synlett
2
4
001, 442-444. (d) Gryko, D. T.; Jadach, K. J. Org. Chem. 2001, 66, 4267-
275. (e) Guilard, R.; Gryko, D. T.; Canard, G.; Barbe, J.-M.; Koszarna,
(Table 1, entries 4-7). Such poor results were primarily due to
B.; Brand e` s, S.; Tasior, M. Org. Lett. 2002, 4, 4491-4494. (f) Barbe, J.-
M.; Burdet, F.; Espinoza, E.; Gros, C. P.; Guilard R. J. Porphyrins
Phthalocyanines 2003, 7, 365-374. (g) Geier, G. R., III; Chick, J. F. B.;
Callinan, J. B.; Reid, C. G.; Auguscinski, W. P. J. Org. Chem. 2004, 69,
(8) (a) Ka, J.-W.; Cho, W.-S.; Lee, C.-H. Tetrahedron Lett. 2000, 41,
8121-8125. (b) Wasbotten, I. H.; Wondimagegn, T.; Ghosh, A. J. Am.
Chem. Soc. 2002, 124, 8104-8116. (c) Gryko, D. T.; Koszarna, B. Org.
Biomol. Chem. 2003, 1, 350-357. (d) Paolesse, R.; Marini, A.; Nardis, S.;
Froiio, A.; Mandoj, F.; Nurco, D. J.; Prodi, L.; Montalti, M.; Smith, K. M.
J. Porphyrins Phthalocyanines 2003, 7, 25-36. (e) Collman, J. P.; Decr e´ au,
R. A. Tetrahedron Lett. 2003, 44, 1207-1210.
(9) Note earlier reports: (a) Loim, N. M.; Grishko, E. V.; Pyshnograeva,
N. I.; Vorontsov, E. V.; Sokolov, V. I. IzV. Akad. Nauk, Ser. Khim. 1994,
925-927. (b) Rose, E.; Kossanyi, A.; Quelquejeu, M.; Soleilhavoup, M.;
Duwavran, F.; Bernard, N.; Lecas, A. J. Am. Chem. Soc. 1996, 118, 1567-
1568.
4
2
6
159-4169. (h) Jeandon, C.; Ruppert, R.; Callot, H. J. Chem. Commun.
004, 1090-1091. (i) Geier, G. R., III; Grindrod, S. C. J. Org. Chem. 2004,
9, 6404-6412. (j) Luguya, R. J.; Fronczek, F. R.; Smith, K. M.; Vicente,
M. G. H. Tetrahedron Lett. 2005, 46, 5365-5368.
(5) (a) Saltsman, I.; Mahammed, A.; Goldberg, I.; Tkachenko, E.;
Botoshansky, M.; Gross, Z. J. Am. Chem. Soc. 2002, 124, 7411-7420. (b)
Paolesse, R.; Nardis, S.; Venanzi, M.; Mastroianni, M.; Russo, M.; Fronczek,
F. R.; Vicente, M. G. H. Chem.sEur. J. 2003, 9, 1192-1197.
(6) Shen, J.; Shao, J.; Ou, Z.; E, W.; Koszarna, B.; Gryko, D. T.; Kadish,
K. M. Inorg. Chem. 2006, 45, 2251-2265.
(7) (a) DiNatale, C.; Salimbeni, D.; Paolesse, R.; Macagnano, A.;
(10) Kr a´ l, V.; Va sˇ ek, P.; Dolensk y´ , B. Collect. Czech. Chem. Commun.
2004, 69, 1126-1136.
DAmico, A. Sens. Actuators, B 2000, 65, 220. (b) Barbe, J.-M.; Canard,
G.; Brand e` s, S.; J e´ r oˆ me, F.; Dubois, G.; Guilard, R. Dalton Trans. 2004,
(11) Intrigued by the big difference in yields between two procedures
reported by Paolesse and co-workers (11% for neat reaction and 21% for
synthesis in CH2Cl2, respectively),8d we repeated their experiments with
very carefully purified, freshly distilled benzaldehyde. We found that the
yields are exactly 17% regardless of the method used (each experiment
was repeated three times by different researchers), which is in contrast to
what is reported. Consequently, benzaldehyde was freshly purified and
distilled before the present study to ensure repeatability of the results.
1
208-1214. (c) Radecki, J.; Stenka, I.; Dolusic, E.; Dehaen, W.; Plavec, J.
Comb. Chem. High Throughput Screening 2004, 7, 375-381. (d) Balazs,
Y. S.; Saltsman, I.; Mahammed, A.; Tkachenko, E.; Golubkov, G.; Levine,
J.; Gross, Z. Magn. Res. Chem. 2004, 42, 624-635. (e) Kadish, K. A.;
Shao, J.; Ou, Z.; Fr e´ mond, L.; Zhan, R.; Burdet, F.; Barbe, J.-M.; Gros, C.
P.; Guilard, R. Inorg. Chem. 2005, 44, 6744-6754. (e) Mahammed, A.;
Gross, Z. J. Am. Chem. Soc. 2005, 127, 2883-2887.
3708 J. Org. Chem., Vol. 71, No. 10, 2006