Organic Letters
Letter
1
1
destabilization as the enabling factor for N−C activation under
mild conditions.
(5) (a) Zapf, A. Angew. Chem., Int. Ed. 2003, 42, 5394. (b) Gooßen, L.
J.; Rodriguez, N.; Gooßen, K. Angew. Chem., Int. Ed. 2008, 47, 3100.
(c) Dzik, W. I.; Lange, P. P.; Gooßen, L. J. Chem. Sci. 2012, 3, 2671. For
electron-deficient aromatic amides are inherently more reactive
4-CF /4-MeO > 20:1). (2) Electron-rich nucleophiles couple
preferentially (4-MeO/4-CF = 2.4:1). (3) An approximately 2-
fold increase in yield is observed when PhB(OH) and K CO
are doubled at low conversion. These effects suggest that
transmetalation is most likely the rate-determining step. (4) A
turnover number of 304 was determined. (5) Intermolecular
competition studies showed higher reactivity of N-acylsaccharins
a review on addition of organometallics to amides, see: (d) Pace, V.;
Holzer, W.; Olofsson, B. Adv. Synth. Catal. 2014, 356, 3686. (e) For a
recent method on the coupling of acyl chlorides with aryl
trifluoroborates, see: Forbes, A. M.; Meier, G. P.; Jones-Mensah, E.;
Magolan. J. Eur. J. Org. Chem. 2016, 2016, 2983.
(6) For a comprehensive review on N−C activation, see: Ouyang, K.;
Hao, W.; Zhang, W. X.; Xi, Z. Chem. Rev. 2015, 115, 12045.
(7) (a) Greenberg, A., Breneman, C. M., Liebman, J. F., Eds. The Amide
Linkage: Structural Significance in Chemistry, Biochemistry, and Materials
Science; Wiley: New York, 2000. (b) Pattabiraman, V. R.; Bode, J. W.
Nature 2011, 480, 471.
(
3
3
2
2
3
15
8
as compared with N-glutarimides, suggesting significant
potential of N-acylsaccharins as acyl-transfer reagents in a
broad range of organometallic manifolds.
(8) (a) Meng, G.; Szostak, M. Org. Lett. 2015, 17, 4364. (b) Meng, G.;
Szostak, M. Angew. Chem., Int. Ed. 2015, 54, 14518. (c) Meng, G.;
Szostak, M. Org. Lett. 2016, 18, 796. (d) Meng, G.; Szostak, M. Org.
Biomol. Chem. 2016, 14, 5690. (e) Shi, S.; Meng, G.; Szostak, M. Angew.
Chem., Int. Ed. 2016, 55, 6959. (f) Shi, S.; Szostak, M. Chem. - Eur. J.
In conclusion, we have developed N-acylsaccharins as new,
amide-based, electrophilic reagents for transition-metal-cata-
lyzed acyl transfer reactions by selective N−C bond cleavage.
These reagents are shelf-stable, easy-to-use, and readily available
from the cheap and benign saccharin. The high reactivity was
demonstrated in the Pd-catalyzed Suzuki−Miyaura cross-
coupling to give a variety of functionalized ketones. Mechanistic
studies support the amide bond distortion as a chemoselectivity-
2
016, 22, 10420.
(9) (a) Weires, N. A.; Baker, E. L.; Garg, N. K. Nat. Chem. 2015, 8, 75.
(b) Li, X.; Zou, G. Chem. Commun. 2015, 51, 5089. Esterification:
(c) Hie, L.; Nathel, N. F. F.; Shah, T. K.; Baker, E. L.; Hong, X.; Yang, Y.
F.; Liu, P.; Houk, K. N.; Garg, N. K. Nature 2015, 524, 79. (d) Simmons,
B. J.; Weires, N. A.; Dander, J. E.; Garg, N. K. ACS Catal. 2016, 6, 3176.
(e) Baker, E. L.; Yamano, M. M.; Zhou, Y.; Anthony, S. M.; Garg, N. K.
22
determining feature in N−C cleavage. Studies to expand the
scope of coupling partners are currently underway.
(
10) Hu, J.; Zhao, Y.; Liu, J.; Zhang, Y.; Shi, Z. Angew. Chem., Int. Ed.
2016, 55, 8718.
(11) Szostak, M.; Aube,
12) Selected reviews on electrophilic reagents in organic synthesis:
ASSOCIATED CONTENT
■
*
S
Supporting Information
́
J. Chem. Rev. 2013, 113, 5701.
(
(
(
a) Merritt, E. A.; Olofsson, B. Angew. Chem., Int. Ed. 2009, 48, 9052.
b) Campbell, M. G.; Ritter, T. Chem. Rev. 2015, 115, 612. (c) Starkov,
X-ray crystallographic data for 1a (CIF)
P.; Jamison, T. F.; Marek, I. Chem. - Eur. J. 2015, 21, 5278.
(13) Dolenc, D. Synlett 2000, 544 and references cited therein.
(
14) (a) Xu, C.; Ma, B.; Shen, Q. Angew. Chem., Int. Ed. 2014, 53, 9316.
b) Ueda, T.; Konishi, H.; Manabe, K. Angew. Chem., Int. Ed. 2013, 52,
8611. (c) Gehrtz, P. H.; Hirschbeck, V.; Fleischer, I. Chem. Commun.
015, 51, 12574.
15) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
b) Lennox, A. J. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43, 412.
16) Islam, M. R.; Islam, J. S.; Zatzman, G. M.; Rahman, M. S.; Mughal,
(
AUTHOR INFORMATION
■
2
(
(
Notes
(
The authors declare no competing financial interest.
M. A. H. The Greening of Pharmaceutical Engineering, Practice, Analysis,
and Methodology; Wiley: Hoboken, NJ, 2015.
ACKNOWLEDGMENTS
(17) Beller, M.; Blaser, H. U. Top. Organomet. Chem. 2012, 42, 1.
■
(
1
(
6
18) Imai, Y.; Okunoyama, H.; Ohkoshi, M. Nippon Kagaku Kaishi
975, 123.
19) (a) Greenberg, A.; Venanzi, C. A. J. Am. Chem. Soc. 1993, 115,
951. (b) Greenberg, A.; Moore, D. T.; DuBois, T. D. J. Am. Chem. Soc.
996, 118, 8658. (c) Szostak, R.; Aube, J.; Szostak, M. Chem. Commun.
J.; Szostak, M. J. Org. Chem. 2015,
Financial support was provided by Rutgers University. The
Bruker 500 MHz spectrometer used in this study was supported
by the NSF-MRI Grant (CHE-1229030). We thank the Wrocław
Center for Networking and Supercomputing (grant number
WCSS159). Y.L. thanks for a scholarship from the Priority Aca-
demic Program Development of Jiangsu Higher Educatio-
n−Yangzhou University and the National Natural Science
Foundation of China (No. 21472616).
1
́
2015, 51, 6395. (d) Szostak, R.; Aube,
80, 7905. (e) Hu, F.; Lalancette, R.; Szostak, M. Angew. Chem., Int. Ed.
2016, 55, 5062. (f) Cox, C.; Lectka, T. Acc. Chem. Res. 2000, 33, 849.
́
(
(
(
20) Milburn, R. R.; Snieckus, V. Angew. Chem., Int. Ed. 2004, 43, 888.
21) Winkler, F. K.; Dunitz, J. D. J. Mol. Biol. 1971, 59, 169.
REFERENCES
■
(
1) (a) Trost, B. M.; Fleming, I. Comprehensive Organic Synthesis;
Pergamon Press: Oxford, 1991. (b) Smith, M. B.; March, J. Advanced
Organic Chemistry; Wiley: Hoboken, NJ, 2007.
(
2) Pietrocola, F.; Galluzzi, L.; San Pedro, J. M. B.; Madeo, F.;
Kroemer, G. Cell Metab. 2015, 21, 805.
3) (a) Metal-Catalyzed Cross-Coupling Reactions and More; de
Meijere, A., Brase, S., Oestreich, M., Eds.; Wiley: New York, 2014. (b)
(
̈
Science of Synthesis: Cross-Coupling and Heck-Type Reactions; Molander,
G., Wolfe, J. P., Larhed, M., Eds.; Thieme: Stuttgart, 2013. (c)
Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi,
E., Ed.; Wiley: New York, 2002.
(
4) Dieter, R. K. Tetrahedron 1999, 55, 4177.
D
Org. Lett. XXXX, XXX, XXX−XXX