J.H. Cho et al. / Applied Catalysis A: General 417–418 (2012) 313–319
319
100
80
60
40
20
0
100
80
60
40
20
0
Acknowledgement
This work was financially supported by a grant from the Indus-
trial Source Technology Development Programs (2008-10031908)
of the Ministry of Knowledge Economy (MKE) of Korea.
Conversion
MIPA yield
References
Selectivity
MIPA
[1] K.S. Hayes, Appl. Catal. A: Gen. 221 (2001) 187–195.
[2] R. Vultier, A. Baiker, A. Wokaun, Appl. Catal. 30 (1987) 167–176.
[3] A. Fischer, T. Mallat, A. Baiker, Angew. Chem. Int. Ed. 38 (1999) 351–354.
[4] M. Pérez-Mendoza, M. Domingo-García, F.J. López-Garzón, Appl. Catal. A: Gen.
224 (2002) 239–253.
[5] G. Sewell, C. O’Connor, E. Steen, Appl. Catal. A: Gen. 125 (1995) 99–112.
[6] J. Becker, J.P.M. Niederer, M. Keller, W.F. Hölderich, Appl. Catal. A: Gen. 197
(2000) 229–238.
Acetone
DIPA
DIPE
0
20
40
60
80
100
[7] G. Boettger, H., Corr, H., Hoffmann, H., Toussaint, S. Winderl, US Patent,
4,014,933 (1977).
Time on stream (%)
[8] H.Y. Jeon, C.-H. Shin, H.J. Jung, S.B. Hong, Appl. Catal. A: Gen. 305 (2006) 70–78.
[9] K.V.R. Chary, K.K. Seel, D. Naresh, P. Ramakanth, Catal. Commun. 9 (2008) 75–81.
[10] G. Sewell, C. O’Connor, E. Steen, J. Catal. 167 (1997) 513–521.
[11] G.A. Vedage, L.A. Emig, H.X. Li, J.N. Armor, US Patent 5,917,092 (1999).
[12] G.A. Vedage, K.S. Hayes, M., Leeaphon, J.N. Armor, US Patent 5,932,769 (1999).
[13] A. Fischer, T. Mallat, A. Baiker, Catal. Today 37 (1997) 167–189.
[14] C. Dume, W.F. Holderich, Appl. Catal. A: Gen. 183 (1999) 167–176.
[15] M.E. Dominea, M.C.H. Sotoa, Y. Perez, Catal. Today 159 (2011) 2–11.
[16] H. Kimura, K. Ishikawa, K. Nishino, S. Nomura, Appl. Catal. A: Gen. 286 (2005)
120–127.
[17] C.U. Kim, Y.S. Kim, H.J. Chae, K.E. Jeong, S.Y. Jeong, K.W. Jun, K.Y. Lee, Korean J.
Chem. Eng. 27 (2010) 777–784.
[18] S. Zafeiratos, T. Dintzer, D. Teschner, R. Blume, M. Havecker, A. Knop-Gericke,
R. Schlogl, J. Catal. 269 (2010) 309–317.
[19] D.S. Kim, Y.H. Kim, J.E. Yie, E.D. Park, Korean J. Chem. Eng. 27 (2010) 822–827.
[20] S.H. Kang, K.J. Woo, J.W. Bae, K.W. Jun, Y. Kang, Korean J. Chem. Eng. 26 (2009)
1533–1538.
[21] P. Khemthong, W. Klysubun, S. Prayoonpokarach, F. Roessner, J. Wittayakun, J.
Ind. Eng. Chem. 16 (2010) 531–538.
[22] D.A. Gardner, R.T. Clark, US Patent 4,255,357 (1981).
[23] I.D. Dobson, W.A. Lidy, P.S. Williams, US Patent 4,912,260 (1990).
[24] B. Tijsebaert, B. Yilmaz, U. Muller, H. Gies, W. Zhang, X. Bao, F.S. Xiao, T. Tatsumi,
D.D. Vos, J. Catal. 278 (2011) 246–252.
[25] D.R. Corbin, S. Schwarz, G.C. Sonnichsen, Catal. Today 37 (1997) 71–102.
[26] J.T. Richardson, W.C. Lu, J. Catal. 42 (1976) 275–281.
[27] J.W. Bae, S.M. Kim, S.H. Kang, K.V.R. Chary, Y.J. Lee, H.J. Kim, K.W. Jun, J. Mol.
Catal. A 311 (2009) 7–16.
[28] M.M. Yung, E.M. Holmgreen, U. Ozkan, J. Catal. 247 (2007) 356–367.
[29] G. Jacobs, Y. Ji, B.H. Davis, D. Cronauer, A.J. Kropf, C.L. Marshall, Appl. Catal. A:
Gen. 333 (2007) 177–191.
[30] A. Tavasoli, R.M.M. Abbaslou, M. Trepanier, A.K. Dalai, Appl. Catal. A: Gen. 345
(2008) 134–142.
Fig. 8. Long-term stability of Co(23)/Al2O3 for reductive amination. Reaction con-
ditions: T = 190 ◦C, WHSV = 4.29 h−1; feed composition of 2-propanol/NH3/H2/N2
(mol%) = 1/6/12/14.8.
nitride [44]. The hydrogen consumption peak at 160 ◦C indicates the
removal of strongly adsorbed nitrogen-containing surface species
in the presence of hydrogen. To investigate the role of hydrogen
in the amination reaction, NH3-TPD was performed under flow-
ing Ar in the absence of hydrogen (Fig. 7(b)). When only Ar was
used during TPD, the second peak was smaller, indicating the facile
in the presence of hydrogen. H2 evolution was not detected during
NH3-TPD. The evolution of NH3 or H2 was not observed over the
sample pretreated with 4% NH3/16% H2/N2, indicating that hydro-
gen was linked to the prevention of catalyst deactivation due to
surface nitride formation [5,40,41,44,45].
The long term stability of the Co(23)/Al2O3 catalyst during
the reductive amination of 2-propanol was assessed (Fig. 8). The
Co(23)/␥-Al2O3 catalyst which showed the best catalytic activity
among the catalysts studied here exhibited constant conversion
and selectivities to MIPA and acetone up to 100 h on stream. The
Co/␥-Al2O3 catalyst showed good catalytic activity and stability,
making its use economically viable.
[31] Y. Ji, Z. Zhao, A. Duan, G. Jiang, J. Liu, J. Phys. Chem. C 113 (2009) 7186–7199.
[32] L. Zhang, L. Dong, W. Yu, L. Liu, Y. Deng, B. Liu, H. Wana, F. Gao, K. Sun, L. Dong,
J. Colloid Interface Sci. 355 (2011) 464–471.
[33] J.W. Bae, S.M. Kim, Y. Jo Lee, M.J. Lee, K.W. Jun, Catal. Commun. 10 (2009)
1358–1362.
[34] A.K. Rausch, E. Steen, F. Roessner, J. Catal. 253 (2008) 111–118.
[35] V. Zamlynny, L. Kubelkova, E. Baburek, K. Jiratova, J. Novakova, Appl. Catal. A:
Gen. 169 (1998) 119–125.
4. Conclusions
The Co/␥-Al2O3 catalysts with 4–27 wt% cobalt loadings
were prepared by incipient-wetness impregnation. Particle sizes
increased from 12.5 to 21.5 nm with increasing cobalt content.
Larger cobalt oxide particles could be more easily reduced due to
weaker interactions with the support. The highly reduced cobalt
metal surface area could be correlated with the enhancement
of 2-propanol conversion. Excess ammonia enhanced 2-propanol
conversion and MIPA selectivity. Excess hydrogen hindered the
phase transition of the catalyst to metal nitride during reaction and
the deactivation of the catalyst. The Co/␥-Al2O3 catalyst showed
good catalytic performance and its catalytic activities were stable in
the presence of excess hydrogen and ammonia under atmospheric
pressure.
[36] A. Baiker, I. Monti, Y. Songfan, J. Catal. 88 (1984) 81–88.
[37] V.A. Bassili, A. Baiker, Appl. Catal. 65 (1990) 293–308.
[38] S.R. Kirumakki, M. Papadaki, K.V.R. Chary, N. Nagarajua, J. Mol. Catal. A 321
(2010) 15–21.
[39] A. Fischer, M. Maciejewski, T. Bu˝ rgi, T. Mallat, A. Baiker, J. Catal. 183 (1999)
373–383.
[40] M.J.F.M. Verhaak, A.J. van Dillen, J.W. Geus, Appl. Catal. A: Gen. 109 (1994)
263–275.
[41] M.J.F.M. Verhaak, A.J. van Dillen, J.W. Geus, J. Catal. 143 (1993) 187–200.
[42] C.R. Narayanan, S. Srinivasan, A.K. Datye, R. Gorte, A. Biaglow, J. Catal. 138 (1992)
659–674.
[43] S. Srinivasan, C.R. Narayanan, A. Biaglow, R. Gorte, A.K. Datye, Appl. Catal. A:
Gen. 132 (1995) 271–287.
[44] A. Baiker, J. Kijenski, Catal. Rev. Sci. Eng. 27 (1985) 653–697.
[45] J. Kritzenberger, E. Jobson, A. Wokaun, A. Baik un, A. Baiker, Catal. Lett. 5 (1990)
73–80.