10.1002/anie.202108170
Angewandte Chemie International Edition
RESEARCH ARTICLE
[5]
[6]
J.-P. Lange, R. Price, P. M. Ayoub, J. Louis, L. Petrus, L. Clarke, H.
Gosselink, Angew. Chem. Int. Ed. 2010, 49, 4479-4483.
a) W. Luo, W. Cao, P. C. A. Bruijnincx, L. Lin, A. Wang, T. Zhang, Green
Chem. 2019, 21, 3744-3768; b) Z. Yu, X. Lu, J. Xiong, N. Ji,
ChemSusChem 2019, 12, 3915-3930.
deconstruction of the zeolite Y during catalysis, implemented by
the stabilizing effect of La species in the zeolite.
Conclusion
[7]
a) W. R. H. Wright, R. Palkovits, ChemSusChem 2012, 5, 1657-1667; b)
L. E. Manzer, Appl. Catal. A 2004, 272, 249-256; c) W. Luo, P. C. A.
Bruijnincx, B. M. Weckhuysen, J. Catal. 2014, 320, 33-41; d) J. Ftouni,
A. Muñoz-Murillo, A. Goryachev, J. P. Hofmann, E. J. M. Hensen, L. Lu,
C. J. Kiely, P. C. A. Bruijnincx, B. M. Weckhuysen, ACS. Catal. 2016, 6,
5462-5472; e) T. Pan, J. Deng, Q. Xu, Y. Xu, Q.-X. Guo, Y. Fu, Green
Chem. 2013, 15, 2967-2974.
This work demonstrated the direct hydrodeoxygenation (HDO) of
ethyl levulinate (EL) into pentanoic biofuels, catalyzed by zeolite-
tailored bifunctional catalyst materials with confined proximity.
The Ru-loaded zeolite Y catalysts provide a sub-nanometric
proximity between metal and acid sites, located and validated by
a combined characterization of advanced electron microscopy,
including AC-HAADF-STEM and cross-sectional-TEM, as well as
probing tests. The catalysis results show that such confined
proximity significantly promotes the catalytic activity and
selectivity to the production of pentanoic biofuels in the direct
HDO of neat EL. Maintaining such confined proximity is crucial for
catalyst stability. La modification is an efficient approach to retain
the catalyst performance, owing to stabilizing the zeolite
framework against deconstruction during thermocatalysis in the
liquid phase. Our findings also extend the notion of ‘the closer, the
better’ into biomass catalysis, and such confined proximity in the
zeolite cavities enables efficiently coupling of catalytic reactions
in a direct, one-pot process, which creates opportunities for the
practical production of pentanoic biofuels.
[8]
[9]
P. John, V. D. Brink, K. L. V. Hebel, J.-P. Lange, L. Petrus, U. S. Patent
8,003,818; B2, 2011.
W. Luo, E. R. H. van Eck, P. C. A. Bruijnincx, B. M. Weckhuysen,
ChemPhysChem 2018, 19, 379-385.
[10] a) J. Zečević, A. M. J. van der Eerden, H. Friedrich, P. E. de Jongh, K.
P. de Jong, ACS Nano 2013, 7, 3698-3705; b) J. Zecevic, G. Vanbutsele,
K. P. de Jong, J. A. Martens, Nature 2015, 528, 245-248.
[11] a) C. Elmasides, D. I. Kondarides, W. Grünert, X. E. Verykios, J. Phys.
Chem. B 1999, 103, 5227-5239; b) J. Sun, X. Li, A. Taguchi, T. Abe, W.
Niu, P. Lu, Y. Yoneyama, N. Tsubaki, ACS. Catal. 2014, 4, 1-8.
[12] W. Luo, M. Sankar, A. M. Beale, Q. He, C. J. Kiely, P. C. A. Bruijnincx,
B. M. Weckhuysen, Nat. Commun. 2015, 6, 6540.
[13] O. Cairon, T. Chevreau, J.C. Lavalley, J. Chem. Soc. 1998, 94, 3039-
3047.
[14] J. G. Goodwin, C. Naccache, J. Catal. 1980, 64, 482-486.
[15] Y. Zhang, X. Yang, X. Yang, H. Duan, H. Qi, Y. Su, B. Liang, H. Tao, B.
Liu, D. Chen, X. Su, Y. Huang, T. Zhang, Nat. Commun. 2020, 11, 3185.
[16] T. Visser, T. A. Nijhuis, A. M. J. van der Eerden, K. Jenken, Y. Ji, W.
Bras, S. Nikitenko, Y. Ikeda, M. Lepage, B. M. Weckhuysen, J. Phys.
Chem. B 2005, 109, 3822-3831.
Acknowledgements
[17] K. Cheng, L. I. van der Wal, H. Yoshida, J. Oenema, J. Harmel, Z. Zhang,
G. Sunley, J. Zečević, K. P. de Jong, Angew. Chem. Int. Ed. 2020, 59,
3592-3600.
The National Key Projects for Fundamental Research and
Development of China (2018YFB1501602), National Natural
Science Foundation of China (21721004, 21703238 and
22078316) are acknowledged for financial support. Z.W. and S.C.
acknowledges the support of Science Foundation of China
University of Petroleum, Beijing (ZX20200125) and National Key
Research and Development Project (2017YFA0403401)
respectively. Dr. B.Y. acknowledges the support of the National
Natural Science Foundation of China (21872145) and the
Foundation of Dalian Institute of Chemical Physics (DICP
I201943). Dr. Rui Chen, Dr. Xiaoli Pan, Yang Su are
acknowledged for the XPS and STEM measurements,
respectively. We thank Xiaoge Bai from Tianjin Xianquan
Instrument Co. for the assistance with FT-IR experiments. Dr. Lu
Lin and Prof. Feng Wang are also acknowledged for the editing
of the figures and fruitful discussion.
[18] a) J. C. Serrano-Ruiz, R. M. West, J. A. Dumesic, Annu. Rev. Chem.
Biomol. 2010, 1, 79-100; b) L. Xin, Z. Zhang, J. Qi, D. J. Chadderdon, W.
Li, ChemSusChem 2013, 6, 674-686.
[20] a) J. Klinowski, Chem. Rev. 1991, 91, 1459-1479; b) G. Paul, C. Bisio, I.
Braschi, M. Cossi, G. Gatti, E. Gianotti, L. Marchese, Chem. Soc. Rev.
2018, 47, 5684-5739; c) B. H. Wouters, T. Chen, P. J. Grobet, J. Phys.
Chem. B 2001, 105, 1135-1139; d) B. H. Wouters, T. H. Chen, P. J.
Grobet, J. Am. Chem. Soc. 1998, 120, 11419-11425.
[21] F. Schüßler, E. A. Pidko, R. Kolvenbach, C. Sievers, E. J. M. Hensen, R.
A. van Santen, J. A. Lercher, J. Phys. Chem. C 2011, 115, 21763-21776.
[22] E. T. C. Vogt, B. M. Weckhuysen, Chem. Soc. Rev. 2015, 44, 7342-7370.
[23] a) J. A. Van Bokhoven, A. L. Roest, D. C. Koningsberger, J. T. Miller, G.
H. Nachtegaal, A. P. M. Kentgens, J. Phys. Chem. B 2000, 104, 6743-
6754; b) J. W. Roelofsen, H. Mathies, R. L. de Groot, P. C. M. van
Woerkom, H. A. Gaur, Stud. Surf. Sci. Catal. 1986, 28, 337-344; c) J.
Kanellopoulos, A. Unger, W. Schwieger, D. Freude, J. Catal. 2006, 237,
416-425; d) M. G. Al-Shaal, W. R. H. Wright, R. Palkovits, Green Chem.
2012, 14, 1260-1263.
Keywords: bifunctional catalysis
• zeolite • proximity •
hydrodeoxygenation • biomass conversion
[24] J. Chen, T. Chen, N. Guan, J. Wang, Catal. Today 2004, 93-95, 627-630.
[25] W. Luo, U. Deka, A. M. Beale, E. R. H. V. Eck, P. C. A. Bruijnincx, B. M.
Weckhuysen, J. Catal. 2013, 301, 175-186.
[1]
a) M. Poliakoff, P. Licence, Nature 2007, 450, 810-812; b) P. E.
Brockway, A. Owen, L. I. Brand-Correa, L. Hardt, Nat. Energy 2019, 4,
612-621; c) A. Corma, S. Iborra, A. Velty, Chem. Rev. 2007, 107, 2411-
2502.
[26] S. Yu, J. Yan, W. Lin, J. Long, S. Liu, Catal. Lett. 2021, 151, 698-712.
[27] J. N. Louwen, S. Simko, K. Stanciakova, R. E. Bulo, B. M. Weckhuysen,
E. T. C. Vogt, J. Phys. Chem. C 2020, 124, 4626-4636.
[2]
[3]
a) C. O. Tuck, E. Pérez, I. T. Horváth, R. A. Sheldon, M. Poliakoff,
Science 2012, 337, 695-699; b) G. W. Huber, S. Iborra, A. Corma, Chem.
Rev. 2006, 106, 4044-4098.
a) D. M. Alonso, S. H. Hakim, S. Zhou, W. Won, O. Hosseinaei, J. Tao,
V. Garcia-Negron, A. H. Motagamwala, M. A. Mellmer, K. Huang, C. J.
Houtman, N. Labbé, D. P. Harper, C. T. Maravelias, T. Runge, J. A.
Dumesic, Sci. Adv. 2017, 3, e1603301; b) D. Shindell, C. Smith, Nature
2019, 573, 408-411.
[4]
K. Barta, Nat. Energy 2018, 3, 917-918.
8
This article is protected by copyright. All rights reserved.