Green Chemistry
ARTICLE
DOI: 10.1039/C C0145
Jou5Grnal Na4Ame
WO /ZrO ꢀCPꢀ300 catalyst, the GVL conversion increased
slightly and the main products were EV and VA.
7. B.V. Timokhin, V.A. Baransky, G.D. Eliseeva, Chem. Rev., 1999,
68, 73ꢀ84.
3
2
8
.
J. J. Bozell, L. Moens, D. C. Elliott, Y. Wang, G. G.
Neuenscwander, S. W. Fitzpatrick, R. J. Bilski, J. L. Jarnefeld,
Resour. Conserv. Recy., 2000, 28, 227ꢀ239.
4
. Conclusion
In summary, we have demonstrated simple yet versatile
supported copper catalysts for the hydrogenation of LA to
GVL and the conversion of GVL to PDO. LA was catalyzed
by Cu (30%)ꢀWO (10%)/ZrO ꢀCPꢀ300 at 413 K in ethanol
and 81% yield of GVL was obtained. The maximum GVL
yield of 94% was obtained at 473 K. Moreover, Cu (30%)/
9. S.W. Fitzpatrick, WO 8910362 A1.
10. S.W. Fitzpatrick, WO 9640609 A1
.
11. I. T. Horvath, H. Mehdi, V. Fabos, L. Boda, L. T. Mika, Green
Chem., 2008, 10, 238ꢀ242.
3
2
12. D. M. Alonso, S. G. Wettstein, J. A. Dumesic, Green Chem., 2013,
15, 584ꢀ595.
ZrO ꢀOGꢀ300 catalysed the hydrogenation of LA to give 84%
2
yield of GVL in water at 393 K. A higher yield of GVL
obtained at a higher temperature (95% yield at 413 K). For
Cuꢀcatalyzed conversion of LA to GVL, these reaction
conditions were the mildest reported by now. The reusability
13. M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi, C. D. Pina,
Angew. Chem. Int. Edit., 2007, 46, 4434ꢀ4440.
14. H. Mehdi, V. Fabos, R. Tuba, A. Bodor, L. T. Mika, I. T. Horvath,
Top Catal., 2008, 48, 49ꢀ54.
experiment of Cu (30%)/ZrO ꢀOGꢀ300 showed good stability
15. W. Li, J. H. Xie, H. Lin, Q. L. Zhou, Green Chem., 2012, 14, 2388ꢀ
2390.
2
of the catalyst in water and a direct hydrogenation of the
hydrolysates containing LA and HCOOH from sugars
achieved a good yield of GVL. Furthermore, it is feasible to
convert GVL to PDO in excellent selectivity using the
supported copper catalysts in ethanol. The findings in this
work will inspire the development of efficient conversion of
platform molecules into fuel additives and higher valueꢀadded
chemicals with economic heterogeneous catalytic systems.
16. W. R. H. Wright, R. Palkovits, ChemSusChem, 2012, 5, 1657ꢀ1667.
17. J. P. Lange, R. Price, P. M. Ayoub, J. Louis, L. Petrus, L. Clarke, H.
Gosselink, Angew. Chem. Int. Edit., 2010, 49, 4479ꢀ4483.
18. L. Deng, J. Li, D. M. Lai, Y. Fu, Q. X. Guo, Angew. Chem. Int.
Edit., 2009, 48, 6529ꢀ6532.
19. L. Deng, Y. Zhao, J. A. Li, Y. Fu, B. Liao, Q. X. Guo,
ChemSusChem., 2010, 3, 1172ꢀ1175.
2
0. X. L. Du, L. He, S. Zhao, Y. M. Liu, Y. Cao, H. Y. He, K. N. Fan,
Acknowledgment
Angew. Chem. Int. Edit., 2011, 50, 7815ꢀ7819.
This work was supported by the 973 Program
21. A. M. Hengne, C. V. Rode, Green Chem., 2012, 14, 1064ꢀ1072.
22. K. Yan, C. Jarvis, T. Lafleur, Y. X. Qiao, X. M. Xie, RSC.
(
2
2012CB215305, 2013CB228103), NSFC (21325208,
1172209, 21272050, 21402181), CAS (KJCX2ꢀEWꢀJ02),
FRFCU (WK206019002 5, WK2060190033), SRFDP
20123402130008) and CPSF (2014M561835).
Advances, 2013,
23. J. Yuan, S. S. Li, L. Yu, Y. M. Liu, Y. Cao, H. Y. He, K. N. Fan,
Energ. Environ. Sci., 2013, , 3308ꢀ3313.
4. F. M. A. Geilen, B. Engendahl, A. Harwardt, W. Marquardt, J.
3, 25865ꢀ25871.
(
6
2
Notes and references
Klankermayer, W. Leitner, Angew. Chem. Int. Edit., 2010, 49
,
*
iChEM, CAS Key laboratory of Urban Pollutant Conversion, Anhui
5510ꢀ5514.
Province Key Laboratory of Biomass Clean Energy, Department of
Chemistry, University of Science and Technology of China, Hefei 230026,
China. E-mail: fuyao@ustc.edu.cn;Fax: 86-551-6360-6689; Tel: 86-551-
25. F. M. A. Geilen, B. Engendahl, M. Holscher, J. Klankermayer, W.
Leitner, J. Am. Chem. Soc., 2011, 133, 14349ꢀ14358.
26. P. P. Upare, J. M. Lee, Y. K. Hwang, D. W. Hwang, J. H. Lee, S. B.
6
360-6640
Halligudi, J. S. Hwang, J. S. Chang, ChemSusChem., 2011, 4,
Electronic Supplementary Information (ESI) available: [details of any
supplementary information available should be included here]. See
DOI: 10.1039/b000000x/
1749ꢀ1752.
27. X. L. Du, Q. Y. Bi, Y. M. Liu, Y. Cao, H. Y. He, K. N. Fan, Green
Chem., 2012, 14, 935ꢀ939.
2
8. B. Putrakumar, N. Nagaraju, V. P. Kumar, K. V.R. Chary, Catal.
Today, 2015, 250, 209ꢀ217.
1
.
G.W. Huber, S. Iborra, A. Corma, Chem. Rev., 2006, 106, 4044ꢀ
098.
4
29. C. O. Cervantes, J. J. García, Inorg. Chim. Acta., 2013, 397, 124ꢀ
2
3
.
.
A. Corma, S. Iborra, A. Velty, Chem. Rev., 2007, 107, 2411ꢀ2502.
A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J.
Cairney, C. A. Eckert, W. J. Frederick, J. P. Hallett, D. J. Leak, C.
L. Liotta, J. R. Mielenz, R. Murphy, R. Templer, T. Tschaplinski,
Science, 2006, 311, 484ꢀ489.
128.
4
5
.
.
N. Armaroli, V. Balzani, Angew. Chem. Int. Edit., 2007, 46, 52ꢀ66.
P. S. Shuttleworth, M. De Bruyn, H. L. Parker, A. J. Hunt, V. L.
Budarin, A. S. Matharu, J. H. Clark, Green Chem., 2014, 16, 573ꢀ
5
84.
6
.
A. A. Rosatella, S. P. Simeonov, R. F. M. Frade, C. A. M. Afonso,
Green Chem., 2011, 13, 754ꢀ793.
8
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 2012