Journal of the American Chemical Society
Communication
(12) Holthausen, M. H.; Mehta, M.; Stephan, D. W. Angew. Chem.,
Int. Ed. 2014, 53, 6538−6541.
being air stable. We attribute the air stability of this derivative to
the tetrahedral geometry of the stibonium center which
prevents an approach by nucleophiles. In solution, however,
solvent promoted reorganization processes allow access to the
electrophilic antimony center, revealing the unusually high
acidity of this derivative. We are currently probing the behavior
of this salt toward a broad range of organic and inorganic
substrates.
́
(13) (a) Perez, M.; Hounjet, L. J.; Caputo, C. B.; Dobrovetsky, R.;
Stephan, D. W. J. Am. Chem. Soc. 2013, 135, 18308−18310.
(b) Caputo, C. B.; Hounjet, L. J.; Dobrovetsky, R.; Stephan, D. W.
Science 2013, 341, 1374−1377. (c) Gabbaï, F. P. Science 2013, 341,
1348−1349.
́
(14) García-Monforte, M. A.; Alonso, P. J.; Ara, I.; Menjon, B.;
Romero, P. Angew. Chem., Int. Ed. 2012, 51, 2754−2757.
(15) Long, G. G.; Stevens, J. G.; Tullbane, R. J.; Bowen, L. H. J. Am.
Chem. Soc. 1970, 92, 4230−4235.
ASSOCIATED CONTENT
■
(16) Sharutin, V. V.; Sharutina, O. K.; Pakusina, A. P.; Platonova, T.
P.; Zadachina, O. P.; Gerasimenko, A. V. Russ. J. Coord. Chem. 2003,
29, 89−92.
S
* Supporting Information
Additional experimental and computational details. Crystallo-
graphic data in cif format. These material is available free of
(17) (a) Lambert, J. B.; Zhang, S.; Ciro, S. M. Organometallics 1994,
13, 2430−2443. (b) Nava, M.; Reed, C. A. Organometallics 2011, 30,
4798−4800. (c) Connelly, S. J.; Kaminsky, W.; Heinekey, D. M.
Organometallics 2013, 32, 7478−7481.
(18) (a) Karipides, A.; Foerst, B. Acta Crystallogr., Sect. B 1978, B34,
3494−3496. (b) Karipides, A.; Forman, C.; Thomas, R. H. P.; Reed, A.
T. Inorg. Chem. 1974, 13, 811−815.
AUTHOR INFORMATION
■
Corresponding Author
(19) (a) Mayer, U.; Gutmann, V.; Gerger, W. Monatsh. Chem. 1975,
106, 1235−1257. (b) Beckett, M. A.; Brassington, D. S.; Coles, S. J.;
Hursthouse, M. B. Inorg. Chem. Commun. 2000, 3, 530−533.
(20) Bock, A.; Dubois, M.; Bonnet, P.; Hamwi, A.; Avignant, D.;
Moch, L.; Morel, B. J. Fluorine Chem. 2012, 134, 24−28.
(21) Davies, T. K.; Moss, K. C. J. Chem. Soc. A 1970, 1054−1058.
(22) Calves, J. Y.; Gillespie, R. J. J. Am. Chem. Soc. 1977, 99, 1788−
1792.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This article is dedicated to Hubert Schmidbaur24 on the
occasion of his 80th birthday. This work was supported by the
National Science Foundation (CHE-1300371), the Welch
Foundation (A-1423), and Texas A&M University (Arthur E.
Martell Chair of Chemistry). We thank Oleg Ozerov for useful
discussions as well as James S. Jones, Masato Hirai, and Mengxi
Yang for their help with some of the data.
(23) Schafer, A.; Saak, W.; Haase, D.; Muller, T. Angew. Chem., Int.
̈
̈
Ed. 2012, 51, 2981−2984.
(24) Schmidbaur, H.; Weidlein, J.; Mitschke, K. H. Chem. Ber. 1969,
102, 4136−4146.
REFERENCES
■
(1) (a) Chen, E. Y.-X.; Marks, T. J. Chem. Rev. 2000, 100, 1391−
1434. (b) Erker, G. Dalton Trans. 2005, 1883−1890. (c) Piers, W. E.
Adv. Organomet. Chem. 2005, 52, 1−76. (d) Stephan, D. W. Dalton
Trans. 2009, 3129−3136. (e) Stephan, D. W.; Erker, G. Angew. Chem.,
Int. Ed. 2010, 49, 46−76. (f) Stephan, D. W. Dalton Trans. 2012, 41,
9015−9015. (g) Stephan, D. W.; Greenberg, S.; Graham, T. W.;
Chase, P.; Hastie, J. J.; Geier, S. J.; Farrell, J. M.; Brown, C. C.; Heiden,
Z. M.; Welch, G. C.; Ullrich, M. Inorg. Chem. 2011, 50, 12338−12348.
(h) Piers, W. E.; Marwitz, A. J. V.; Mercier, L. G. Inorg. Chem. 2011,
50, 12252−12262.
(2) (a) Reed, C. A. Acc. Chem. Res. 2010, 43, 121−128. (b) Stahl, T.;
Klare, H. F. T.; Oestreich, M. ACS Catal. 2013, 3, 1578−1587.
(c) Klare, H. F. T.; Oestreich, M. Dalton Trans. 2010, 39, 9176−9184.
(3) (a) Douvris, C.; Ozerov, O. V. Science 2008, 321, 1188−1190.
(b) Panisch, R.; Bolte, M.; Muller, T. J. Am. Chem. Soc. 2006, 128,
̈
9676−9682.
(4) (a) Olah, G. A.; Schlosberg, R. H. J. Am. Chem. Soc. 1968, 90,
2726−2727. (b) Olah, G. A.; Klopman, G.; Schlosberg, R. H. J. Am.
Chem. Soc. 1969, 91, 3261−3268. (c) Olah, G. A. J. Org. Chem. 2005,
70, 2413−2429.
(5) Gutmann, V.; Hubacek, H.; Steininger, A. Monatsh. Chem. 1964,
95, 678−686.
(6) Krossing, I.; Raabe, I. Chem.Eur. J. 2004, 10, 5017−5030.
(7) Ke, I.-S.; Jones, J. S.; Gabbaï, F. P. Angew. Chem., Int. Ed. 2014,
53, 2633−2637.
(8) Hirai, M.; Gabbai, F. P. Chem. Sci. 2014, 5, 1886−1893.
(9) (a) Wade, C. R.; Ke, I.-S.; Gabbaï, F. P. Angew. Chem., Int. Ed.
2012, 51, 478−481. (b) Wade, C. R.; Gabbaï, F. P. Organometallics
2011, 30, 4479−4481.
(10) Ke, I.-S.; Myahkostupov, M.; Castellano, F. N.; Gabbaï, F. P. J.
Am. Chem. Soc. 2012, 134, 15309−15311.
(11) Robertson, A. P. M.; Burford, N.; McDonald, R.; Ferguson, M. J.
Angew. Chem., Int. Ed. 2014, 53, 3480−3483.
9567
dx.doi.org/10.1021/ja505214m | J. Am. Chem. Soc. 2014, 136, 9564−9567