T. Brendgen, M. Frank, J. Schatz
FULL PAPER
53.1 (ArCH2Im), 58.3 (OCH3), 74.8 (ArCH2O), 76.4 and 77.1 (Ar-
OCH2), 122.2 and 123.3 (Im-C), 125.9, 128.6, 128.9, 129.6, 130.8,
132.0, 134.2, 134.8, 136.1 (Ar-C), 137.2 (Im-C), 140.8, 156.5, 157.1
(Ar-C) ppm. MS (MALDI-TOF): calcd. for C60H71N4O5: 927.5;
BMBF for a Ph. D. grant. Generous support from Prof. G. Maas,
University of Ulm, is gratefully acknowledged.
found m/z = 927.0 [M – 2HCl – OCH3]+. C60H76N4O6Cl2 [1] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457–2483.
[2] S. Kotha, K. Lahiri, D. Kashinath, Tetrahedron 2002, 58, 9633–
(1020.18): calcd. C 70.64, H 7.51, N 5.49; found C 71.17, H 7.69,
N 4.79.
9695.
[3] A. F. Littke, G. C. Fu, Angew. Chem. 2002, 114, 4350–4386;
Angew. Chem. Int. Ed. 2002, 41, 4176–4211.
[4] A. C. Hillier, G. A. Grasa, M. S. Viciu, H. M. Lee, C. Yang,
S. P. Nolan, J. Organomet. Chem. 2002, 653, 69–82.
[5] M. Miura, Angew. Chem. 2004, 116, 2251–2253; Angew. Chem.
Int. Ed. 2004, 43, 2201–2203.
[6] H.-W. Wanzlick, E. Schikora, Angew. Chem. 1960, 72, 494.
[7] D. Bourissou, O. Guerret, F. Gabbai, G. Bertrand, Chem. Rev.
2000, 100, 39–92.
[8] M. Regitz, Angew. Chem. 1996, 108, 791–794; Angew. Chem.
Int. Ed. Engl. 1996, 35, 725–728.
5,17-Bis[(3-isopropylimidazolium-1-yl)methyl]-11,23-bis(methoxy-
methyl)-25,26,27,28-tetrapropoxycalix[4]arene Dichloride (4d): The
product was obtained by refluxing: 5,17-bis(chloromethyl)-11,23-
bis(methoxymethyl)-25,26,27,28-tetrapropoxycalix[4]arene (1.00 g,
1.29 mmol), 1isopropylimidazole (299 mg, 2.71 mmol), CHCl3(abs.)
(10.0 mL), and Et2O (70 mL) for 2 d. Yield: 0.81 g (0.81 mmol,
63%). M.p. 133–135 °C. IR (KBr): ν = 2966 (s), 2933 (s), 2875 (s)
˜
(C–H), 1606 (w), 1554 (m) (C=C and C=N), 1464 (s), 1379 (m),
1309 (m) (C–H), 1274 (m), 1222 (m), 1179 (m), 1147 (s), 1087 (m),
1040 (w) (Ar–O–C and C–O), 888 (w), 865 (w), 753 (w) (Ar- [9] W. A. Herrmann, C. Köcher, Angew. Chem. 1997, 109, 2256–
H) cm–1. 1H NMR (CDCl3): δH = 0.88 and 1.10 (t, J = 7.6, 7.5 Hz,
2×6 H, CH2CH3), 1.59 [d, J = 6.8 Hz, 12 H, CH(CH3)2] 1.84–1.98
(m, 8 H, CH2CH3), 3.16 (d, J = 13.4 Hz, 4 H, ArCH2Ar), 3.47 (s,
6 H, OCH3), 3.68 and 4.01 (t, J = 6.8, 8.2 Hz, 2×4 H, ArOCH2),
4.44 (d, J = 13.4 Hz, 4 H, ArCH2Ar), 4.47 (s, 4 H, ArCH2O), 4.74
[sept, J = 6.7 Hz, 2 H, NCH(CH3)2], 4.93 (s, 4 H, ArCH2Im), 6.26
(s, 4 H, Ar-H), 6.80 (t, J = 1.6 Hz, 2 H, Im), 7.12 (s, 4 H, Ar-H),
7.65 (t, J = 1.6 Hz, 2 H, Im), 10.24 (s, 2 H, NCHN) ppm. 13C
NMR (CDCl3): δC = 9.6 and 10.6 (CH2CH3), 22.7 (CH2CH3), 22.9
[CH(CH3)2], 23.3 (CH2CH3), 30.8 (ArCH2Ar), 52.7 (ArCH2Im),
53.0 [NCH(CH3)2], 58.3 (OCH3), 74.7 (ArCH2O), 76.4 and 77.1
(ArOCH2), 120.1 and 121.0 (Im-C), 125.5, 128.7, 128.9, 131.8,
134.6 (Ar-C), 135.2 (Im-C), 136.1, 156.4, 157.0 (Ar-C) ppm. MS
(MALDI-TOF): calcd. for C58H78N4O6Cl: 961.6; found m/z =
961.4 [M – Cl]+. C58H78N4O6Cl2·2H2O (1034.21): calcd. C 67.36,
H 7.99, N 5.42; found C 67.21, H 8.16, N 5.57.
2282; Angew. Chem. Int. Ed. Engl. 1997, 36, 2162–2187.
[10] N. M. Scott, S. P. Nolan, Eur. J. Inorg. Chem. 2005, 1815–1828.
[11] A. C. Hillier, S. P. Nolan, Platinum Met. Rev. 2002, 46, 50–64.
[12] M. C. Perry, K. Burgess, Tetrahedron: Asymmetry 2003, 14,
951–961.
[13] C. W. K. Gstöttmayr, V. P. Böhm, E. Herdtweck, M. Grosche,
W. A. Herrmann, Angew. Chem. 2002, 114, 1421–1423; Angew.
Chem. Int. Ed. 2002, 41, 1363–1365.
[14] H. Lebel, M. K. Janes, A. B. Charette, S. P. Nolan, J. Am.
Chem. Soc. 2004, 126, 5046–5047.
[15] G. A. Grasa, M. S. Viciu, J. Huang, C. Zhang, M. L. Trudell,
S. P. Nolan, Organometallics 2002, 21, 2866–2873.
[16] A. Fürstner, A. Leitner, Synlett 2001, 290–292.
[17] C. Zhang, J. Huang, M. L. Trudell, S. P. Nolan, J. Org. Chem.
1999, 64, 3804–3805.
[18] N. Hadei, E. A. B. Kantchev, C. J. O’Brien, M. G. Organ, Org.
Lett. 2005, 7, 1991–1994.
[19] P. E. Garrou, Chem. Rev. 1985, 85, 171–185.
[20] W. A. Herrmann, M. Elison, J. Fischer, C. Köcher, G. R. J.
Artus, Angew. Chem. 1995, 107, 2602–2605; Angew. Chem. Int.
Ed. Engl. 1995, 34, 2371–2374.
[21] B. Cornis, W. A. Herrmann (Eds.), Aqueous-Phase Organome-
tallic Catalysis in Aqueous-Phase Organometallic Catalysis,
Wiley-VCH, Weinheim, 2004.
[22] C.-J. Li, Chem. Rev. 2005, 105, 3095–3166.
[23] P. A. Grieco (Ed.), Organic Synthesis in Water, Blackie Aca-
demic & Professional, London, Weinheim, New York, Tokyo,
Melbourne, Madras, 1998.
Suzuki Cross-Coupling Reactions: The necessary ligand 1–4 (3 mol-
%) was added to degassed solvent in vials that could be sealed with
a screw-cap. After adding base (2 mmol) and Pd(OAc)2 (3 mol-%)
as the source of palladium the reaction mixture was heated to 80 °C
for 30 min. During this period of time the solutions turned deep-
red; the aryl halide (1.0 mmol) and benzeneboronic acid (1.5 mmol)
were then added under an inert atmosphere and the sealed reaction
vessels were heated to 80 °C in a heating block that held up to 24
test tubes. After the desired time of heating (Table 1) the reaction
was stopped and the product ratio determined. For this purpose,
an aliquot was withdrawn from the reaction mixture and analyzed
by NMR spectroscopy. No volatiles were removed because such a
procedure changed the product ratio as proven by blank experi-
ments.
[24] S. Otto, J. B. F. N. Engberts, Org. Biomol. Chem. 2003, 1, 2809–
2820.
[25] A. Arcadi, G. Cerichelli, M. Chiarini, M. Correa, D. Zorzan,
Eur. J. Org. Chem. 2003, 20, 4080–4086.
[26] R. B. Bedford, M. E. Blake, C. P. Butts, D. Holder, Chem.
Commun. 2003, 466–467.
[27] H. Sakurai, T. Tsukuda, T. Hirao, J. Org. Chem. 2002, 67,
For the cross-coupling reaction in aqueous media the reaction mix-
ture was extracted with CHCl3. The combined organic extracts
were filtered through a short pad of Celite, an aliquot (0.2 mL) was
withdrawn, CDCl3 (0.4 mL) was added, and the product ratio was
determined by NMR spectroscopy as before. The product ratio
over the whole concentration range was not affected by the extrac-
tion process as indicated by blank extraction experiments per-
formed on all solvent mixtures. The yields quoted are the average
yields obtained from two to five independent runs.
2721–2722.
[28] Y. Zhao, Y. Zhou, D. Ma, J. Liu, L. Li, T. Y. Zhang, H. Zhang,
Org. Biomol. Chem. 2003, 1, 1643–1646.
[29] W. Zhang, C. Hiu-Tung Chen, Y. Lu, T. Nagashima, Org. Lett.
2004, 6, 1473–1476.
[30] D. Sauer, Y. Wang, Org. Lett. 2004, 6, 2793–2796.
[31] M. Baur, M. Frank, J. Schatz, F. Schildbach, Tetrahedron 2001,
57, 6985–6991.
[32] F. Hapiot, J. Lyskawa, H. Bricout, E. Monflier, Adv. Synth.
Catal. 2004, 346, 83–89.
[33] M. Frank, G. Maas, J. Schatz, Eur. J. Org. Chem. 2004, 607–
613.
Acknowledgments
[34] R. K. Arvela, N. E. Leadbeater, M. S. Sangi, V. A. Williams, P.
Granados, R. D. Singer, J. Org. Chem. 2005, 70, 161–168.
[35] A. F. Littke, G. C. Fu, Angew. Chem. 1998, 110, 3586–3587;
Angew. Chem. Int. Ed. 1998, 37, 3387–3388.
This work was supported by the Deutschen Forschungsgemein-
schaft. M.F. thanks the Fonds der Chemischen Industrie and the
2382
www.eurjoc.org
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2006, 2378–2383