Green Chemistry
DOI: 10.1039/C5GC01272D
and phenyl radical. For the pathway III, BPE can be
depolymerized into phenoxymethyl radical and phenyl radical.
And then, benzyloxy and phenoxymethyl radicals can be further
decomposed into phenyl radical, carbon monoxide and hydrogen
[6] a) T. H. Parsell, B. C. Owen, I. Klein, T. M. Jarrell, C. L. Marcum, L.
J. Haupert, L. M. Amundson, H. I. Kenttämaa, F. Ribeiro, J. T. Miller
and M. M. AbuꢀOmar, Chem. Sci., 2013, 4, 806; b) Z. Strassberger,
A. H. Alberts, M. J. Louwerse, S. Tanase and G. Rothenberg, Green
Chem., 2013, 15, 768; c) J. D. Nguyen, B. S. Matsuura and C. R. J.
Stephenson, J. Am. Chem. Soc., 2014, 136, 1218; d) X. Xu, Y. Li, Y.
T. Gong, P. F. Zhang, H. R. Li and Y. Wang, J. Am. Chem. Soc.,
6
6
7
7
8
8
9
9
0
5
0
5
0
5
0
5
24
5
radical. Next, hydrogen radical from pathway I and II may
combine with PhOCH Ph radical to form BPE or PhOCH Ph
radical combines with other radicals or itself to produce heavier
●
●
2
012, 134, 16987.
[
7] a) B. Sedai, C. DíazꢀUrrutia, R. T. Baker, R. L. Wu, L. A. Silks and S.
K. Hanson, ACS Catal., 2013, 3, 3111; b) C. Crestini, P. Pro, V. Neri
and R. Saladino, Bioorgan. Med. Chem., 2005, 13, 2569; c) J.
Zakzeski, P. C. A. Bruijnincx and B. M. Weckhuysen, Green Chem.,
25
products. Thus, the products containing bezene, biphenyl,
carbon monoxide and other high molecular weight compounds
can be formed through the linkage of different radicals.
1
0
2
011, 13, 671.
[
8] a) A. G. Sergeev and J. F. Hartwig, Science, 2011, 332, 439; b) Q.
Song, F. Wang and J. Xu, Chem. Commun., 2012, 48, 7019; c) J. Y.
He, C. Zhao and J. A. Lercher, J. Am. Chem. Soc., 2012, 134, 20768.
d) M. Chatterjee, T. Ishizaka, A. Suzuki and H. Kawanami, Chem.
Commun., 2013, 49, 4567; e) E. Feghali and T. Cantat, Chem.
Commun., 2014, 50, 862; f) H. Ohta, H. Kobayashi, K. Hara and A.
Fukuoka, Chem. Commun., 2011, 47, 12209; g) R. Rinaldi, Angew
Chem Int Edit ,2014, 53, 8559.
4. Conclusions
We have carried out the depolymerization of BPE into phenol and
toluene using Pd/C as the catalyst with and without Na CO and
2
3
NMP in argon atmosphere. The reaction is governed by a freeꢀ
radical pathway. In our reaction system, as a main pathway, BPE
is cracked into phenoxy and benzyl radicals. Pd/C can catalyze
the reaction, and Na CO and NMP can enhance the
1
2
2
5
0
5
[
[
9] B. Güvenatam, O. Kurs¸ E. H. J. Heeres, E. A. Pidko and E. J. M.
Hensen, Catal. Today, 2014, 233, 83.
10] H. W. Park, S. Park, D. R. Park, J. H. Choi and I. K. Song, J. Ind.
Eng. Chem., 2011, 17, 736.
2
3
transformation. There is a maximum in each of the yield vs
reaction time curve, yield vs Pd/C amount curve, yield vs amount
Na CO curve, and yield vs NMP amount curve because the
[
[
11] X. Y. Wu and X. Y. Lu, Chinese Chem. Lett., 2011, 22, 733.
12] L. Yang,. Y. Li and P. E. Savage, Ind. Eng. Chem. Res., 2014, 53,
2633.
2
3
combination of different free radicals can be further taken place.
At the optimized reaction conditions, the yields of phenol and
toluene can reach 1.6% and 50.4%, respectively. We believe that
the interesting results of this work will trigger more researches on
exploring new and green methods for the catalytic valorization of
lignin.
[13] J. He., L. Lua, C. Zhao, D. Mei. and J. A. Lercher, J. Catal., 2014,
311, 41.
[
[
14] J. Pan, J. Fu, S. Deng and X. Lu, Energy Fuels, 2014, 28, 1380.
15] A. C. Buchanan, III, P. F. Britt, J. T. Skeen, J. A. Struss, and C. L.
Elam, J. Org. Chem., 1998, 63, 9895.
[16] A. F. Carley, H. A. Edwards, B. Mile, M. W. Roberts and C. C.
Rowlands, J. Chem. Soc. Faraday Trans., 1994, 90(21), 3341.
[
[
17] P. Zhang, T. Wu, T. Jiang, W. Wang, H. Liu, H. Fan, Z. Zhang and B.
Han, Green Chem., 2013, 15, 152.
18] A. Rahimi, A. Azarpira, H. Kim, J. Ralph and S. S. Stahl, J Am
Chem Soc., 2013, 135, 6415.
Acknowledgements
[19] V. Roberts, S. Fendt, A. A. Lemonidou., X. Li and J. A. Lercher,
Appl. Catal. B: Environ., 2010, 95, 71.
The authors are grateful to National Natural Science Foundation
of China (21173234, 21273253,21321063) and Chinese Academy
of Sciences (KJCX2.YW.H30) for financial supports.
[
[
20] K. H. Kima, X. Baib and R. C. Brown, J. Anal. Appl. Pyrol., 2014,
10, 254.
21] E. Vejerano, S. Lomnicki and B. Dellinger, Environ. Sci. Technol.,
2011, 45, 589.
3
0
1
1
1
00
05
Notes and references
[22] N. J. Turro, V. Ramamurthy and J. Scaiano, Modern Molecular
Photochemistry of Organic Molecules, 1st ed., University Science
Books, Sausalito, 2010.
a
Beijing National Laboratory for Molecular Science, Key Laboratory of
Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry,
Chinese Academy of Sciences, Beijing, P.R. China. Fax: (+86) 10 6256
[
23] A. Beste, A. C. Buchanan III, P. F. Britt, B. C. Hathorn and R. J.
Harrison, J. Phys. Chem. A, 2007, 111, 12118.
3
4
4
5
5
5
0
5
0
5
2
[
[
24] S. K. Singha and J. D. Ekhe, Catal. Sci. Technol., 2015, 5, 2117.
25] X. Huang, C. Liu, J. Huang and H. Li, Comput. Theor. Chem., 2011,
9
76, 51.
†
Electronic Supplementary Information (ESI) available. See
DOI: 10.1039/b000000x/
1] M. C Haibach, N. Lease and A. S. Goldman, Angew. Chem. Int. Ed.,
014, 53, 10160.
[
2
[2] C. S. Lancefield, O. S. Ojo, F. Tran and N. J. Westwood,. Angew.
Chem. Int. Ed., 2015, 54, 258.
[3] A. Rahimi, A. Ulbrich, J. J. Coon and S. S. Stahl, Nature, 2014, 515,
49.
2
[
4] a) B. K. Avellar and W. G. Glasser, Biomass Bioenerg., 1998, 14, 205;
b) S. Chu, A. V. Subrahmanyam and G. W. Huber, Green Chem.,
2
013, 15, 125.
[5] a) V. Molinari, C. Giordano, M. Antonietti and D. Esposito, J. Am.
Chem. Soc., 2014, 136, 1758. b) S. Y. Jia, B. J. Cox, X. W. Guo, Z. C.
Zhang and J. G. Ekerdt, Ind Eng Chem. Res, 2011, 50, 849; c) M. R.
Sturgeon, S. Kim, K. Lawrence, R. S. Paton, S. C. Chmely, M.
Nimlos, T. D. Foust and G. T. Beckham, ACS Sustainable Chem.
Eng., 2014, 2, 472.
6
| Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]