COMMUNICATIONS
Marcella Bonchio et al.
mL closed teflon reactor (HPR-1000/10S, Milestone) equipped
with temperature and pressure control units and irradiated in-
side the cavity of a MW Ethos-1600 labstation (Milestone) at
103–112; c) A. de la Hoz, A. Diaz-Ortiz, A. Moreno,
Chem. Soc. Rev. 2005, 34, 164–178.
[11] F. Zonnevijlle, C. M. Tourn e´ , G. F. Tourn e´ , Inorg. Chem.
1982, 21, 2751–2757.
12] C. Nozaki, I. Kiyoto, Y. Minai, M. Misono, N. Mizuno,
Inorg. Chem. 1999, 38, 5724–5729.
2
40 W, with Tbulk ¼1208C and Pbulk ffi 2 atm. In the system un-
der examination, higher irradiation powers caused heating and
pressure peaks which are detrimental for obtaining a reprodu-
cible heating profile. The reaction was sampled (50 mL) every
[
[
13] J. Liu, F. Ort e´ ga, P. Sethuraman, D. E. Katsoulis, C. E.
50 minutes always restoring the dioxygen atmosphere. The
Costello, M. T. Pope, J. Chem. Soc. Dalton Trans. 1992,
samples were analyzed by GLC and GLC-MS. Peroxide con-
tent was determined using the triphenylphosphine quencher
1
901–1906.
[
14] U. Kortz, M. G. Savelieff, B. S. Bassil, B. Keita, L. Nadjo,
Inorg. Chem. 2002, 41, 783–789.
15] Carboxylic acids were mainly observed as overoxidation
products while significant chlorinated products were de-
tected only under conventional heating likely originating
fromautoxidation pathways involving the solvent.
[30]
method, carboxylic acids were revealed by silylation with
BSTFA before GLC-MS analysis. Fe-POM stabilities were as-
sessed by FT-IR after precipitation fromthe reaction mixture
and washing with diethyl ether. Kinetic parameters were ob-
tained by non-linear experimental data fitting with the Scientist
Micromath software.
[
[
16] CH CN completely inhibits catalysis, thus explaining a
3
[8]
previously reported observation.
[
17] Fe-TMP-catalyzed oxidation occurs with no induction
time likely due to formation of organic radicals from li-
gand degradation.
18] R. A. Sheldon, J. K. Kochi, Metal-Catalyzed Oxidations
of Organic Compounds, Academic Press, New York,
Acknowledgements
Financial support from the Italian National Council of Research
is gratefully acknowledged.
[
[
1
981.
19] R. Pohorecki, J. Baldyga, W. Moniuk, W Podg o´ rska, A.
References and Notes
Zdr o´ jkowski, P. T. Wierzchowski, Chem. Eng. Sci. 2001,
5
6, 1285–1291, and references cited therein.
[
[
[
[
[
[
[
1] K. Weissermel, H. J. Arpe, Industrial Organic Chemistry,
nd edn., VCH, Weinheim, 1993.
2] T. Hayashi, A. Kishida, N. Mizuno, Chem. Commun.
000, 381–382.
3] C. Nozaki, M. Misono, N. Mizuno, Chem. Lett. 1998,
263–1264.
4] T. Iwahama, K. Syojyo, S. Sakaguchi, Y. Ishii, Org. Proc-
ess Res. Dev. 1998, 2, 255–260.
5] D. H. R. Barton, T. Li, J. MacKinnon, Chem. Commun.
[20] a) M. Bonchio, V. Conte, F. Di Furia, G. Modena, J. Org.
Chem. 1989, 54, 4368–4371; b) M. Bonchio, V. Conte, F.
Di Furia, G. Modena, S. Moro, J. O. Edwards, Inorg.
Chem. 1994, 33, 1631–1637.
[21] A. S. Goldstein, R. S. Drago, Inorg. Chem. 1991, 30,
4506–4510.
2
2
1
[22] MW-induced super-heating is likely to promote the unca-
talyzed initiation of the autoxidation.
[23] G. A. Russel, J. Am. Chem. Soc. 1957, 79, 3871–3877.
À8
À1
8
1
997, 557–558.
[24] Calculated kinetic constants k ¼7.0ꢀ10 (s ); k ¼10
1
2
À1
À1 À1
III
À8
À1
6] Y. Ishii, T. Iwahama, S. Sakaguchi, K. Nakayama, Y.
Nishiyama, J. Org. Chem. 1996, 61, 4520–4526.
7] a) B. J. Wallar, J. D. Lipscomb, Chem. Rev. 1996, 96,
(s ); k ¼3.8 (L mol
s
); k ꢀ[Fe ]¼10 (s ); k ꢀ
3
4
7
5
II
À4
À1
À1 À1
8
[Fe ]¼2.8ꢀ10 (s ); k ¼10 (L mol
s
); k ¼10 (L
6
7
À1 À1
III
mol
s
); k ꢀ[Fe ]¼0.
8
2
625–2658; b) M. Costas, M. P. Mehn, M. P. Jensen, L.
[25] The selectivity parameter is defined as the relative reac-
tivity of tertiary to secondary CH groups calculated per
H atom. Under the conditions explored (see footnotes
in Table 1), adamantane (0.15 mmol) is oxidized, in
chlorobenzene, to 1-adamantanol, 2-adamantanol and
adamantanone in a relative ratio 76:16:8.
Que Jr., Chem. Rev. 2004, 104, 939–986; c) T. J. McMur-
ry, J. T. Groves, in: Metalloporphyrin Models for Cyto-
chrome P-450, (Ed.: P. R Ortiz de Montellano), Plenum
Press, New York, 1986, pp. 1–28.
[8] a) Y. Nishiyama, Y. Nakagawa, N. Mizuno, Angew.
Chem. 2001, 113, 3751–3753; Angew. Chem. Int. Ed.
[26] M. Bonchio, G. Scorrano, P. Toniolo, V. Artero, A.
Proust, V. Conte, Adv. Synth. Catal. 2002, 344, 841–
844, and references cited therein.
[27] a) Y. Ishii, S. Sakaguchi, T. Iwahama, Adv. Synth. Catal.
2001, 343, 393–427; b) F. Minisci, F. Fontana, S. Araneo,
F. Recupero, S. Banfi, S. Quici, J. Am. Chem. Soc. 1995,
117, 226–232.
2
001, 40, 3639–3641; b) N. Mizuno, C. Nozaki, T. Hirose,
M. Tateishi, M. Iwamoto, J. Mol. Catal. A: Chem. 1997,
17, 159–168; c) N. Mizuno, M. Hashimoto, Y. Sumida,
1
Y. Nakagawa, K. Kamata, in: Polyoxometalate Chemistry
for Nano-Composite Design, Kluwer Academic/Plenum,
New York, pp. 197–203, 2002; d) N. Mizuno, Catal. Surv.
Japan 2000, 4, 149–154.
[28] J. D. Chen, J. Dakka, R. A. Sheldon, Appl. Catal. A: Gen.
1994, 108, L1-L6.
[
9] C. L. Hill , C. M. Prosser-McCartha, Coord. Chem. Rev.
1
995, 43, 407–455.
[29] J. Kim, R. G. Harrison, C. Kim, L. Que Jr., J. Am. Chem.
Soc. 1996, 118, 4373–4379.
[
10] M. Larhed, C. Moberg, A. Hallberg, Acc. Chem. Res.
2
002, 35, 717–727; b) A. Loupy CR Chimie 2004, 7,
[30] G. B. Shulꢁpin, CR Chim. 2003, 6, 163–178.
1912
asc.wiley-vch.de
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2005, 347, 1909 – 1912