M. Haranaka et al. / Tetrahedron Letters 50 (2009) 3585–3587
3587
Table 2
Nucleophilic character (XNu) of oxygen-transfer agents derived from thianthrene 5-oxide
O
O
S
S
nucleophilic
oxidation
electrophilic
oxidation
nucleophilic oxidation
total oxidation
O
S
O
O
X
=
=
S
Nu
SSO
2
S
O
O
S
S
SSO + SOSO
2
2
electrophilic
oxidation
nucleophilic
oxidation
SSO
SOSO2
SSO + SOSO + 2SOSO
2
2
S
O
SOSO
Oxygen-transfer reactionsa
Active oxidant
Total yields %
Abs yields, mMb
XNu
Ref.
c
Entry
SSO2 nNu
SOSO nEl
SOSO2 nNu, nEl
1
2
3
4
9-Diazofluorene/1O2/CH2Cl2; 20 °C
[R2C@O+—Oꢁ]
15.1
2.7
13.9
3.08
11.89
1.48
3.53
3.86
0.08
1.11
6.17
19.6
2.36
trace
3.44
0.85
0.57
0.42
0.17
This work
This work
5
15
Fe(TPFP)Cl/9-diazofluorene/1O2/CH2Cl2; 20 °C
Fe(TPFP)Cl/PhIO/CH2Cl2; 20 °C
[M@O(porph)Cl]+[R2C@O+—Oꢁ]
[M@O(porph)Cl]
O3/CH2Cl2; ꢁ78 °C ? 20 °C
0.156
a
A trace of oxidized products of thianthrene 5-oxide was obtained in Fe(TPFP)Cl/1O2/CH2Cl2; 20 °C, 1O2/CH2Cl2; 20 °C, and PhIO/CH2Cl2; 20 °C systems.
b
The typical ratio of reactants, thianthrene 5-oxide/9-diazofluorene/PhIO/Fe(TPFP)Cl, is 80/30/20/1, [Fe(TPFP)Cl] = 1.2 ꢀ 10ꢁ3 M. Amount of conversion of thianthrene 5-
oxide into SSO2, SOSO, and SOSO2 products determined by GLC.
c
Mole fraction of amount of nucleophilic attack, that is, nNu/(nNu + nEl); SOSO2 represents double oxygen-transfer product either via the sequence
SSOðOX Þ ! SOSOðOX Þ ! SOSO2 or via the sequence SSOðOX Þ ! SSO2ðOX Þ ! SOSO2, so that the yield of SOSO2 is equally added to nNu and to nEl
.
Nu
Nu
El
El
N2
1O2
O
S
O
S
OH
OMe
O
M(porph)Cl
O
O
D
S
S
OH
(H)
O
O
S
OMe
O
O
S
S
M=O(porph)Cl
S
D
Scheme 3.
Groves, J. T.; Kruper, W. J.; Haushalter, R. C. J. Am. Chem. Soc. 1980, 102, 6375–
6377; (d) Groves, J. T.; Nemo, T. E. J. Am. Chem. Soc. 1983, 105, 5786–5791.
8. (a) Groves, J. T.; Watanabe, Y. Inorg. Chem. 1987, 26, 785–786; (b) Groves, J. T.;
Watanabe, Y. Inorg. Chem. 1986, 25, 4808–4810; (c) Watanabe, Y.; Yamaguchi,
K.; Morishima, I.; Takehira, K.; Shimizu, M.; Hayakawa, T.; Orita, H. Inorg. Chem.
1991, 30, 2581–2582.
9. (a) Mansuy, D.; Bartoli, J. F.; Chottard, J. C.; Lange, M. Angew. Chem., Int. Ed. Engl. 1980,
19, 909–910; (b) Traylor, T. G.; Fann, W. P.; Bandyopadhyay, D. J. Am. Chem. Soc. 1989,
111, 8009–8010; (c) He, G. X.; Bruice, T. C. J. Am. Chem. Soc. 1991, 113, 2747–2753.
10. In the case of using Fe porphyrins instead of Mn porphyrin, similar catalytic
effects were obtained in our previous study. Mn porphyrins are slightly more
effective for hydroxylation, on the contrary less effective for epoxidation. The
details will be reported elsewhere.
to M(porph)Cl to afford M@O(porph)Cl, which can oxidize hydrocar-
bon, sulfide, and anisole to alcohol, sulfoxide, and methoxyphenol,
respectively (Scheme 3). The present findings may be of great help
in understanding the reaction of olefin and ozone as an oxidant in
synthetic application and the biological system.
References and notes
1. Bailey P. S., Ozonation in Organic Chemistry, Academic Press, New York, Vol. 1
(1978), Vol. 2 (1982).
2. (a) Sander, W. Angew. Chem., Int. Ed. Engl. 1990, 29, 344–354; (b) Bunnelle, W.
H. Chem. Rev. 1991, 91, 335–362; (c) McCullough, K. J.; Nojima, M. In Org.
Peroxides; Ando, W., Ed.; Wiley: New York, 1992; pp 661–728; (d) Ishiguro, K.;
Nojima, T.; Sawaki, Y. J. Phys. Org. Chem. 1997, 10, 787–796.
3. (a) Wentworth, P., Jr. et al Science 2002, 298, 2195–2199; (b) Babior, B. M.; Takeuchi,
C.; Ruedi, J.; Gutierrez, A.; Wentworth, P., Jr. Proc. Natl. Acad. Sci. U.S.A. 2003, 100,
3031–3034; (c) Nieva, J.; Wentworth, P., Jr. Trends Biochem. Sci. 2004, 29, 274–278;
(d) Yamashita, K.; Miyoshi, T.; Arai, T.; Endo, N.; Itoh, H.; Makino, K.; Mizugishi, K.;
Uchiyama, T.; Sasada, M. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 16912–16917.
4. Akasaka, T.; Haranaka, M.; Ando, W. J. Am. Chem. Soc. 1991, 113, 9898–9900.
5. Akasaka, T.; Haranaka, M.; Ando, W. J. Am. Chem. Soc. 1993, 115, 7005–7006.
6. Meunier, B. Chem. Rev. 1992, 92, 1411–1456.
11. Proof for reagent 1O2 was obtained by testing oxygenation in the absence of a
sensitizer and light and by adding Dabco: . J. Am. Chem. Soc. 1972, 94, 1032–1033.
12. Chang, C. K.; Ebina, F. J. Chem. Soc., Chem. Commun. 1981, 778–779.
13. Kurata, T.; Watanabe, Y.; Katoh, M.; Sawaki, Y. J. Am. Chem. Soc. 1988,110, 7472–7478.
14. Daly, J. W.; Guroff, G.; Jerina, D. M.; Udenfriend, S.; Witkop, B. Adv. Chem. Ser.
1968, 77, 279–289.
15. Jefcoate, C. R. E.; Lindsay Smith, J. R.; Norman, R. O. C. J. Chem. Soc. B 1969, 1013–1018.
16. (a) Adam, W.; Haas, W.; Sieker, G. J. Am. Chem. Soc. 1984, 106, 5020–5022; (b)
Adam, W.; Haas, W.; Lohray, B. B. J. Am. Chem. Soc. 1991, 113, 6202–6208; (c)
Adam, W.; Golsch, D.; Görth, F. C. Chem. Eur. J. 1996, 2, 255–258.
17. In this system, carbonyl oxide (open form) and dioxirane (cyclic form) can be
generated. In our case we consider that the open form is major because of high
XNu (0.85) in control experiment.
7. (a) Groves, J. T.; Nemo, T. E.; Myers, R. S. J. Am. Chem. Soc. 1979, 101, 1032–
1033; (b) Hill, C. L.; Schardt, B. C. J. Am. Chem. Soc. 1980, 102, 6374–6375; (c)