52
S. Góger et al. / Journal of Inorganic Biochemistry 123 (2013) 46–52
[
[
7] J.C. Fernández-Maculet, S.F. Yang, Plant Physiol. 99 (1992) 751–754.
8] Y.S. Seo, A. Yoo, J. Jung, S.-K. Sung, D.R. Yang, W.T. Kim, W. Lee, Biochem. J. 380
2004) 339–346.
with several oxidants, such as H
DMF/H O (3:1) solution at 35 °C. Ethylene and acetone were formed as
main products. The highest catalytic activity was observed in H . The
model was extended to different cyclic and acyclic amino acids. Detailed
kinetic measurements were carried out. All the reactions were first order
in catalyst and in oxidant as well. Substrate dependence revealed a
Michaelis–Menten type behavior. The kinetic parameters were mea-
2 2
O , TBHP, PhIO, MCPBA, and PMS in
2
(
2
O
2
[9] Z. Zhang, J.-S. Ren, I.J. Clifton, C. Schofield, J. Chem. Biol. 11 (2004) 1383–1394.
10] A. Yoo, Y.S. Seo, J.-W. Jung, S.-K. Sung, W.T. Kim, W. Lee, D.R. Yang, J. Struct. Biol.
[
[
156 (2006) 407–420.
11] M. Costas, M.P. Mehn, M.P. Jensen, L. Que Jr., Chem. Rev. 104 (2004) 939–986.
[12] R.P. Hausinger, Crit. Rev. Biochem. Mol. Biol. 39 (2004) 21–68.
[13] I.J. Clifton, M.A. McDonough, D. Ehrismann, N.J. Kershaw, N. Granatino, C.J.
Schofield, J. Inorg. Biochem. 100 (2006) 644–669.
2 2
sured in both DMF/H O (3:1) and DMF/D O (3:1). Results show the
[
14] C.J. Schofield, Z. Zhang, Curr. Opin. Struct. Biol. 9 (1999) 722–731.
presence of SIEs. The effect of changes in the electronic nature of the
SALEN ligand on the rate of oxidation was investigated. We found,
that electron-donating substituents at the 5-position enhance the rate,
while electron-withdrawing substituents retard it. Possible reactive
intermediate [Fe O(SALEN)] was generated. Its reaction with ACC
was studied under pseudo first order conditions. Activation parameters
were determined. On the basis of the results, a plausible mechanism
was proposed.
[15] J.C. Price, E.W. Barr, B. Tirupati, J.M. Bollinger Jr., C. Krebs, Biochemistry 42 (2003)
7497–7508.
[
16] J.C. Price, E.W. Barr, T.E. Glass, C. Krebs, J.M. Bollinger Jr., J. Am. Chem. Soc. 125 (2003)
3008–13009.
17] W. Nam, Acc. Chem. Res. 40 (2007) 522–531.
1
[
IV
•+
[18] L. Que Jr., Acc. Chem. Res. 40 (2007) 493–500.
[
[
[
19] J.U. Rohde, J.H. In, M.H. Lim, W.W. Brennessel, M.R. Bukowski, A. Stubna, E.
Münck, W. Nam, L. Que Jr., Science 299 (2003) 1037–1039.
20] M.R. Bukowski, K.D. Koehntop, A. Stubna, E.L. Bominaar, J.A. Halfen, E. Münck, W.
Nam, L. Que Jr., Science 310 (2005) 1000–1002.
21] J. Kaizer, E.J. Klinker, N.Y. Oh, J.U. Rohde, W.J. Song, A. Stubna, J. Kim, E. Münck, W.
Nam, L. Que Jr., J. Am. Chem. Soc. 126 (2004) 472–473.
Acknowledgments
[
[
22] J. Kaizer, M. Costas, L. Que Jr., Angew. Chem. Int. Ed. 42 (2003) 3671–3673.
23] J.U. Rohde, S. Torelli, X. Shan, M.H. Lim, E.J. Klinker, J. Kaizer, K. Chen, W. Nam, L.
Que Jr., J. Am. Chem. Soc. 126 (2004) 16750–16761.
The present article was published in the frame of the projects
TÁMOP-4.2.1/B-09/1/KONV-2010-0003 and TÁMOP-4.2.2/B-10/1-
[
24] E.J. Klinker, J. Kaizer, W.W. Brennessel, N.L. Woodrum, C.J. Cramer, L. Que Jr.,
Angew. Chem. Int. Ed. 117 (2005) 3756–3760.
2
010-0025. The projects were realized with the support of the
[25] M.P. Jensen, M. Costas, R.Y.N. Ho, J. Kaizer, I. Payeras, A. Mairata, E. Münck, L. Que
Hungarian Government and the European Union, with the co-funding
of the European Social Fund. Furthermore, financial support of
the Hungarian National Research Fund (OTKA K75783) and COST is
also gratefully acknowledged.
Jr., J.U. Rohde, A. Stubna, J. Am. Chem. Soc. 127 (2005) 10512–10525.
[
[
26] T.K. Paine, M. Costas, J. Kaizer, L. Que Jr., J. Biol. Inorg. Chem. 11 (2006) 272–276.
27] T. Macdonald, K. Zirvi, L. Burka, G. Peyman, F.P. Guengerich, J. Am. Chem. Soc. 104
(1982) 2050–2052.
[28] M.C. Pirrung, J. Cao, J. Chen, Chem. Biol. 5 (1998) 49–57.
[
[
[
29] M.C. Pirrung, Acc. Chem. Res. 32 (1999) 711–718.
30] M. Ito, H. Tokiwa, Bull. Chem. Soc. Jpn. 80 (2007) 1731–1739.
31] L. Brisson, N. El Bakkali-Taheri, M. Giorgi, A. Fadel, J. Kaizer, M. Réglier, T. Tron,
E.H. Ajandouz, A.J. Simaan, J. Biol. Inorg. Chem. 17 (2012) 939–949.
32] G. Baráth, J. Kaizer, J.S. Pap, G. Speier, N. El Bakkali-Taheri, A.J. Simaan, J. Chem.
Commun. 46 (2010) 7391–7393.
Appendix A. Supplementary data
[
[
33] A.M.I. Jayaseeli, S. Rajagopal, J. Mol. Catal. A: Chem. 309 (2009) 103–110.
[34] N.S. Venkataramanan, G. Kuppuraj, S. Rajagopal, Coord. Chem. Rev. 249 (2005)
249–1268.
1
[
[
[
35] K.P. Bryliakov, E.P. Talsi, Angew. Chem. Int. Ed. 43 (2004) 5228–5230.
36] K.P. Bryliakov, E.P. Talsi, Chem. Eur. J. 13 (2007) 8045–8050.
37] T. Kurahashi, Y. Kobayashi, S. Nagatomo, T. Tosha, T. Kitagawa, H. Fujii, Inorg.
Chem. 44 (2005) 8156–8166.
References
[
[
[
[
[
[
1] A.B. Blecker, H. Kende, Annu. Rev. Cell Dev. Biol. 16 (2000) 1–18.
2] P. John, Physiol. Plant. 100 (1997) 583–592.
3] H. Kende, Plant Physiol. 91 (1989) 1–4.
4] D.J. McGarvey, R.E. Christoffersen, J. Biol. Chem. 267 (1992) 5964–5967.
5] A.J. Hamilton, G.W. Lycett, D. Grierson, Nature 346 (1990) 284–287.
6] A.J. Hamilton, M. Bouzayen, D. Grierson, Proc. Natl. Acad. Sci. U. S. A. 88 (1991)
[
38] V.K. Sivasubramanian, M. Ganesan, S. Rajagopal, R. Ramaraj, J. Org. Chem. 67 (2002)
1506–1514.
[
[
39] J.M. Mayer, I.J. Rhile, Biochim. Biophys. Acta 1655 (2004) 51–58.
40] J.P. Kirby, J.A. Roberts, D.G. Nocera, J. Am. Chem. Soc. 119 (1997) 9230–9236.
7434–7437.