RSC Advances
Paper
to Cy-ol, Cy-one, Cy-HP and Cy-oxide decreased linearly because
of the occurrence of peroxidation as the reaction time was
increased. Therefore, the oxidation was conducted at 6 h to
obtain desired conversion and selectivity under optimized
reaction conditions.
7 L. Li, G. Yan, Z. Cheng, J. Wu, X. Yu and Q. Guo, Surf.
Interface Anal., 2009, 41, 69.
8 R. H. Guo, S. Q. Jiang, C. W. M. Yuen and M. C. F. Ng, J.
Mater. Sci.: Mater. Electron., 2009, 20, 33.
9 H. Wang, J. Jia, H. Song, X. Hu, H. Sun and D. Yang, Ceram.
Int., 2011, 37, 2181.
In full, the CuNi-ELD/Co-5 composite shows compatible
catalytic activity as the catalysts previously reported for the 10 F. Cai, X. Shen, M. Dai, M. Gao, Z. Wang, B. Zhao and
oxidation of cyclohexene (Table 3 entries 8–10). High conver- W. Ding, Chin. J. Inorg. Chem., 2013, 29, 689.
sion and selectivity of the oxidation of cyclohexene can be 11 B. Çelen, D. Ekiz, E. Pi¸skin and G. Demirel, J. Mol. Catal. A:
obtained over CuNi-ELD/Co catalyst under solvent-free
conditions.
Chem., 2011, 350, 97.
12 H. Cao, Z. Wang, G. Hou and G. Zheng, Surf. Coat. Technol.,
2010, 205, 885.
13 C. Fukuhara, H. Ohkura, Y. Kamata, Y. Murakami and
A. Igarashi, Appl. Catal., A, 2004, 273, 125.
4 Conclusions
In summary, CuNi-ELD/Co composites with different compo- 14 C. Fukuhara, Y. Kamata and A. Igarashi, Appl. Catal., A, 2005,
sitions and microstructures were prepared by electroless 296, 100.
deposition and used for the rst time as a catalyst for the 15 C. Fukuhara and H. Ohkura, Appl. Catal., A, 2008, 344, 158.
oxidation of cyclohexene. The amorphous phase can be formed 16 R. A. Sheldon and J. K. Kochi, Metal Catalyzed Oxidations of
as a dominating phase in Cu deposits with low Cu content and
possesses a honeycomb-like porous morphology. The micro- 17 K. C. Gupta, A. K. Sutar and C. Lin, Coord. Chem. Rev., 2009,
structure of the Cu deposit changes from amorphous phase to 253, 1926.
cubic sphere-like crystalline phase with the increase of Cu 18 N. V. Maksimchuk, M. N. Timofeeva, M. S. Melgunov,
Organic Compounds, Academic Press, New York, 1981.
content. Both Cu content and microstructure of the CuNi-ELD/
A. N. Shmakov, Y. A. Chesalov, D. N. Dybstev, V. P. Fedin
Co composite can signicantly affect its catalytic activity for the
and O. A. Kholdeeva, J. Catal., 2008, 257, 315.
oxidation of cyclohexene. CuNi-ELD/Co-5 catalyst with 6.0 wt% 19 S. Ganji, P. Bukya, V. Vakati, K. S. R. Rao and D. R. Burri,
Cu content and amorphous phase shows the best catalytic
Catal. Sci. Technol., 2013, 3, 409.
performance in the oxidation of cyclohexene under solvent-free 20 J. Tong, Y. Zhang, Z. Li and C. Xia, J. Mol. Catal. A: Chem.,
conditions. Compared with the traditional catalysts, CuNi-ELD/ 2006, 249, 47.
Co composite prepared by electroless deposition is low coast 21 Y. Fu, D. Sun, M. Qin, R. Huang and Z. Li, RSC Adv., 2012, 2,
and environmentally benign with compatible catalytic activity. 3309.
It is a promising catalyst for the oxidation of hydrocarbon 22 Z. Cai, M. Zhu, J. Chen, Y. Shen, J. Zhao, Y. Tang and
compounds.
X. Chen, Catal. Commun., 2010, 12, 197.
23 H. Huang, H. Zhang, Z. Ma, Y. Liu, H. Ming, H. Li and
Z. Kang, Nanoscale, 2012, 4, 4964.
24 S. E. Dapurkar, H. Kawanami, K. Komura, T. Yokoyama and
Y. Ikushima, Appl. Catal., A, 2008, 346, 112.
Acknowledgements
The authors gratefully acknowledge the nancial support from
the National Natural Science Foundation of China (NSFC 25 D. Jiang, T. Mallat, D. M. Meier, A. Urakawa and A. Baiker, J.
21163011), the Natural Science Foundation of Inner Mongolia Catal., 2010, 270, 26.
(2013MS0208), and the Science Research Projects of Inner 26 A. Ibrahim, M. Abdallah, S. F. Mostafa and A. A. Hegazy,
Mongolia University (NJ10072). Thanks are also due to Zhanli Mater. Des., 2009, 30, 1398.
Chai of School of Chemistry and Chemical Engineering, Inner 27 G. Wang and D. Wang, Rare Met., 2008, 27, 434.
Mongolia University, for helpful discussions.
28 H. Wang, J. Jia, H. Song, X. Hu, H. Sun and D. Yang, Ceram.
Int., 2011, 37, 2181.
29 Y. Wu, Q. Liu and H. Wang, J. Compos. Mater., 2011, 46, 1453.
30 J. Li, H. Hayden and P. A. Kohl, Electrochim. Acta, 2004, 49,
1789.
31 X. Gan, K. Zhou, W. Hu and D. Zhang, Surf. Coat. Technol.,
2012, 206, 3405.
Notes and references
1 Z. Huang, F. Cui, H. Kang, J. Chen, X. Zhang and C. Xia,
Chem. Mater., 2008, 20, 5090.
2 M. J. Grapperhaus, Z. Krivokapic and M. J. Kushner, J. Appl.
Phys., 1998, 83, 35.
32 J. Hao, B. Liu, H. Cheng, Q. Wang, J. Wang, S. Cai and
F. Zhao, Chem. Commun., 2009, 3460.
3 H. Choi and S. Park, J. Am. Chem. Soc., 2004, 126, 6248.
4 Q. Zhang, Y. Hua, Y. Wang, H. Lu and X. Zhang, 33 J. Hao, S. Li, L. Han, L. Cheng, Q. Suo, Y. Xiao, X. Jiao,
Hydrometallurgy, 2009, 98, 291.
X. Feng, W. Bai and X. Song, Inorg. Chim. Acta, 2014, 421,
5 R. K. Aithal, S. Yenamandra, R. A. Gunasekaran, P. Coane
and K. Varahramyan, Mater. Chem. Phys., 2006, 98, 95.
6 G. O. Mallory and J. B. Hadju, Electroless Plating:
246.
34 D. Cheng, W. Xu, Z. Zhang and Z. Yiao, Met. Finish., 1997, 95,
34.
Fundamentals and Applications, American Electroplates and 35 X. Gan, Y. Wu, L. Liu, B. Shen and W. Hu, Surf. Coat.
Surface Finishers Society, Orlando, FL, 1990.
Technol., 2007, 201, 7018.
13816 | RSC Adv., 2015, 5, 13809–13817
This journal is © The Royal Society of Chemistry 2015