10.1002/cssc.201802198
ChemSusChem
FULL PAPER
of chlorobenzene as internal standard. The conversion and yield of
products were calculated on the basis of oxygen quantity in batch
reactor.
[7]
[8]
a) J.E. Lyons, P.E. Ellis Jr., H.K. Myers Jr., J. Catal. 1995, 155, 59–73;
b) M.W. Grinstaff, M.G. Hill, Y.A. Labinger, H.B. Gray, Science 1994,
264, 1311–1313; c) G.B. Shulpin, J. Mol. Catal. A 2002, 189, 39–66; d)
E. Roduner, W. Kaim, B. Sarkar, V.B. Urlacher, J. Pleiss, R. Glaser, W.-
D. Einicke, G.A. Sprenger, U. Beifuß, E. Klemm, C. Liebner, H.
Hieronymus, S.-F. Hsu, B. Plietker, S. Laschat, ChemCatChem. 2013,
5, 82–112.
Computational Details
The structures of the investigated porphyrins with and without attached
oxygen molecule were obtained by Density Functional Theory (DFT)
calculations within non-local Becke-Perdew functional[14a-e]
Resolution-of-identity (RI) algorithm was applied in order to accelerate
computation[14f-g]. The calculation consisted of geometry optimization of
the studied structures with def2-SVP basis set, further confirmed with
vibrational analysis. Larger basis set of def2-TZVP quality was used[14h]
to compute the electronic structure and properties of the investigated
system, including ESP atomic charges calculated within Merz-Kollman
scheme[14i]. The present results were obtained with Turbomole v. 7.1[14j]
The reported molecular oxygen binding energies (EbO2) were computed
using the following formula:
EbO2 = Etot(Porf-O2) - Etot(Porf) - Etot(O2)
where:
.
The
a) J. C. Barona-Castaño, Ch. C. Carmona-Vargas, T. J. Brocksom, K. T.
de Oliveira, Molecules 2016, 21, 310; b) J.P. Collman, J.I. Brauman, B.
Meunier, T. Hayashi, T. Kodadek, S.A. Raaybuck, J. Am. Chem. Soc.
1985, 107, 2000-2005; c) B.de Poorter, B. Meunier, J. Chem. Soc.,
Perkin Trans.II 1985, 1735-1740; d) P. Hoffman, A. Robert, B. Meunier,
Bull. Soc. Chem. Fr. 1992, 129, 85-97; e) A.M. d’ A. Rocha Gonsalves,
M.M. Pereira, A.C. Serra, R.A.W. Johnstone, L.P.G. Nunes, J. Chem.
Soc. Perkin Trans. 1994, 2053-2057.
.
[9]
a) R.A. Sheldon J.K. Kochi in Metal catalyzed oxidations of organic
compounds, (Eds.: R.A. Sheldon J.K. Kochi), Academic Press, Inc.,
London, 1981, pp. 34–70; b) I. Hermans, P.A. Jacobs, J. Peeters, J.
Mol. Catal. A 2006, 251, 221–228; c) G.S. Mishra, J.J.R. Frausto de
Etot(Porf-O2) – total electronic energy of the porphyrin complex with
molecular oxygen,
Etot(Porf) – total electronic energy of the porphyrin species,
Etot(O2) – total electronic energy of the oxygen molecule.
Silva, A.J.L. Pombeiro, J. Mol. Catal. A 2007, 265, 59–69; d) I.
Hermans, J. Peeters, P. A. Jacobs, Top. Catal. 2008, 48, 41–48; e) T.G.
Traylor, X. Feng, J. Am. Chem. Soc. 1987,109, 6201–6202; f) D.
Mansuy, J.F. Bartoli, M. Momenteau, Tetrahedron Lett.1982, 23, 2781–
2784.
[10] A. Szymańska, W. Nitek, M. Oszajca, W. Łasocha, K. Pamin, J.
Połtowicz, Catal. Lett. 2016, 146, 998-1010.
Acknowledgements
[11] a) I. Hermans, P.A. Jacobs , J. Peeters J. Mol. Catal. A: Chem. 2006,
251, 221–228; b) I. Hermans, J. Peeters, P.A. Jacobs, Top. Catal. 2008,
48, 41–48; c) D. Mansuy, J.-F. Bartoli, M. Momenteau, Tetrahedron Lett.
1982, 23, 2781–2784; d) T.G. Traylor, F. Xu, J. Am. Chem. Soc. 1987,
109, 6201–6202; e) B. Meunier, S. P. de Visser, S. Shaik, Chem. Rev.
2004, 104, 3947-3980.
This research was supported in part by PL-Grid Infrastructure.
Keywords: cobalt porphyrin • cycloalkanes oxidation • DTF
calculations • molecular oxygen • sustainability
[12] a) K. Liu, Y.Lei, G. Wang, J. Chem. Phys. 2013, 139, 204306-1 -
204306-9; b) D. Rutkowska-Żbik, R. Tokarz-Sobieraj, M. Witko, J.
Chem. Theory Comput. 2007, 3, 914-920.
[1]
a) U. Schuchardt, R.Pereira, M. Rufo, J. Mol. Catal. A: 1998, 135, 257–
262; b) U. Schuchardt, W.A. Carvahlo, E.V. Spinacé, Synlett 1993, 10,
713-718; c) K.U. Ingold, Aldrichchim Acta 1989, 22, 69-74; d) G.
Rothenberg in Catalysis, (Ed.: G. Rothenberg), Wiley-VCH Verlag,
Weinheim, 2008, pp. 1-38.
[13] a) M. Kihn-Botulinski, B. Meunier, Inorg. Chem. 1988, 27, 209-210; b)
J.E. Lyons, P.E. Ellis, Jr., H.K.Myers, Jr., J. Catal. 1995, 155, 59-73; c)
J.F. Bartoli, P. Battioni, W.R. de Foor, D. Mansuy, J. Chem. Soc. Chem.
Comunn. 1994, 1, 23-24; d) A.D. Adler, F.R. Longo, F. Kampas, J. Kim,
J. Inorg. Nucl. Chem. 1970, 32, 2443-2445.
[2]
a) D. Mansuy, Coord. Chem. Rev. 1993, 125, 129-141; b) D. Mansuy,
R. Battioni in Metalloporphyrins in Catalytic Oxidation, (Ed.: R.A.
Sheldon), Marcel Dekker, Basel, 1994, pp. 99-133; c) D. Mansuy, Pure
and Appl. Chem. 1987, 59, 759-770; d) P. Rothemund, A.R. Menotti, J.
Am. Chem. Soc. 1941, 63, 267-270; e) A.D. Adler, F.R. Longo, W.
Shergalis, J. Am. Chem. Soc. 1964, 86, 3145-3149; f) R. A. Baglia, J. P.
T. Zaragoza, D. P. Goldberg, Chem. Rev. 2017, 117, 13320-13352; g)
W. J. Song, M. S. Seo, S. De Beer George, T. Ohta, R. Song, M.-J.
Kang, T. Tosha, T. Kitagawa, E. I. Solomon, W. Nam, J. Am. Chem.
Soc. 2007, 129, 1268-1277; h) J. T. Groves, R. C. Haushalter, M.
Nakamura, T. E. Nemo, B. J. Evans, J. Am. Chem. Soc. 1981, 103,
2884-2886; i) H. Tang, Ch. Shen, M. Lin, A. Sen, Inorganica Chimica
Acta 2000, 300–302, 1109–1111.
[14] a) P.A.M. Dirac, Proceedings of the Royal Society of London. Series A
1929, 123, 714-733; b) J.C. Slater, Phys. Rev. 1951, 81, 385-390; c) S.
H.Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200-1211; d) A.
D. Becke, Phys. Rev. A 1988, 38, 3098-3100; e) J.P. Perdew, Phys.
Rev. B 1986, 33, 8822-8824; f) K. Eichkorn, O.Treutler, H. Ohm, M.
Haser, R. Ahlrichs, Chem. Phys. Lett. 1995, 240, 283-289; g) K.
Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997,
97, 119-124; h) A.Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994,
100, 5829-5835; i) U.C. Singh, P.A. Kollman, J. Comput. Chem. 1984,
5, 129-145; j) Turbomole V 7.1, a. d. o. U. o. K.; Forschungszentrum
Karlsruhe GmbH, T. G. s.; available, f. w. t. c.
[3]
[4]
a) J.S. Lindsay, I.C. Schreiman, H.C. Hsu, P.C. Kearney, A.R.
Marguerettaz, J. Org. Chem. 1987, 52, 827-836; b) P. Battioni, J. P.
Renaud, J. F. Bartoli, M. Reina-Artiles, M. Fort, D. Mansuy, J. Am.
Chem. Soc. 1988, 110, 8462-8470; c) B. Meunier in Metalloporphyrin
Catalyzed Oxidation, (Eds.: F. Montanari, L. Casella), Kluwer Academic
Publishers, Dordrecht, 1994, pp. 4-20.
a) B. Meunier, Chem. Rev. 1992, 92, 1411–1456; b) Metalloporphyrin
Catalyzed Oxidation, (Eds.: F. Montanari, L. Casella), Kluwer Academic
Publishers, Dordrecht, 1994; c) Metalloporphyrins in Catalytic Oxidation,
(Ed.: R.A. Sheldon), Marcel Dekker, Basel, 1994; d) M. Costas, K.
Chen, L. Que, Jr., Coord. Chem. Rev. 2000, 200/202, 517-544; e) C.-
M. Che, K-Y. Lo, C-Y. Zhou, J-S. Huang, Chem. Soc. Revs. 2011, 40,
1950-1975; f) M. Costas, Coord. Chem. Rev. 2011, 255, 2912-2932.
a) J. Połtowicz, E. Tabor, K. Pamin, J.Haber, Inorg. Chem. Commun.
2005, 8, 1125-1127; b) E. Tabor, J. Połtowicz, K. Pamin, S. Basąg,
W.W. Kubiak, Polyhedron 2016, 119, 342–349.
[5]
[6]
C.-C. Guo, J. Catal. 1998, 178, 182-187.
This article is protected by copyright. All rights reserved.