Full Paper
doi.org/10.1002/ejoc.202000584
EurJOC
European Journal of Organic Chemistry
9593; Angew. Chem. 2011, 123, 9767; P. Sponholz, D. Mellmann, C. Cor-
des, P. G. Alsabeh, B. Li, Y. Li, M. Nielsen, H. Junge, P. Dixneuf, M. Beller,
ChemSusChem 2014, 7, 2419–2422.
[5]
[6]
a) A. Friedrich, S. Schneider, ChemCatChem 2009, 1, 72; b) M. Trincado,
D. Banerjee, H. Grützmacher, Energy Environ. Sci. 2014, 7, 2464; c) K.
Sordakis, C. Tang, L. K. Vogt, H. Junge, P. J. Dyson, M. Beller, G. Laurenczy,
Chem. Rev. 2018, 118, 372–433.
For reviews, see: a) S. Bähn, S. Imm, L. Neubert, M. Zhang, H. Neumann,
M. Beller, ChemCatChem 2011, 3, 1853–1864; b) G. Guillena, D. J. Ramon,
M. Yus, Chem. Rev. 2010, 110, 1611–1641; c) M. H. S. A. Hamid, P. A.
Slatford, J. M. J. Williams, Adv. Synth. Catal. 2007, 349, 1555–1575; d) A.
Quintard, J. Rodriguez, ChemSusChem 2016, 9, 28–30; e) F. Huang, Z. Liu,
Z. Yu, Angew. Chem. Int. Ed. 2016, 55, 862–875; Angew. Chem. 2016, 128,
872.
[7]
[8]
H. Aitchison, R. L. Wingad, D. F. Wass, ACS Catal. 2016, 6, 7125–7132.
Iridium catalysts: a) K.-E. Fujita, T. Yoshida, Y. Imori, R. Yamagushi, Org.
Lett. 2011, 13, 2278–2281; b) S. Musa, I. Shaposhnikov, S. Cohen, D. Gel-
man, Angew. Chem. Int. Ed. 2011, 50, 3533–3537; Angew. Chem. 2011,
123, 3595; c) A. V. Polukeev, P. V. Petrovskii, A. S. Peregudov, M. G. Ezer-
nitskaya, A. A. Koridze, Organometallics 2013, 32, 1000–1015; d) S. Gìlce-
mal, D. Gìlcemal, G. F. S. Whitehead, J. Xiao, Chem. Eur. J. 2016, 22,
10513–10522; e) K.-i. Fujita, R. Tamura, Y. Tanaka, M. Yoshida, M. Onoda,
R. Yamaguchi, ACE Catal. 2017, 7, 7226–7230.
[9]
Iridium catalysts operating under base-free conditions: a) K.-i Fujita,
N. Tanino, R. Yamagushi, Org. Lett. 2007, 9, 109–111; b) A. H. Ngo, M. J.
Adams, L. H. Do, Organometallics 2014, 33, 6742–6745; c) R. Kawahara,
K.-E. Fujita, R. Yamaguchi, Angew. Chem. Int. Ed. 2012, 51, 12790–12794;
Angew. Chem. 2012, 124, 12962; d) G. Gonzalez Miera, E. Martínez-Castro,
B. Martín-Matute, Organometallics 2018, 37, 636; e) R. G. Alabau, M. A.
Esteruelas, A. Martinez, M. Olivan, E. Oñate, Organometallics 2018, 37,
2732–2740; f) Q. Wang, C.-H. Guo, X. Zhang, M. Zhu, H. Jiao, H.-S. Wu,
Eur. J. Org. Chem. 2019, 3929–3936.
Figure 4. Proposed mechanism.
Conclusions
We have implemented an iridium catalyst for the acceptorless
and base-free dehydrogenation of alcohols. This catalyst dis-
plays high efficiency in a number of alcohol dehydrogenation
reactions performed under experimental conditions similar to
those reported until now. However, by contrast to many of the
recently reported catalysts based on complex ligand architec-
tures, this catalyst is easily prepared from accessible com-
pounds. It is noteworthy that the nature of dipyridylamine li-
gand, particularly the substitution pattern at the bridging nitro-
gen, turned to be a key parameter, as previously observed in
the dehydrogenation of formic acid. We will take advantage of
the tunability of the dipyridylamine ligand to further improve
the catalyst performances in organic media and in water.
[10]
Ruthenium catalysts: a) G. B. W. L. Ligthart, R. H. Meijer, M. P. J. Donners,
J. Meuldijk, J. A. J. M. Vekemans, L. A. Hulshof, Tetrahedron Lett. 2003, 44,
1507–1509; b) J. Zhang, M. Gandelman, L. J. W. Shimon, H. Rozenberg,
D. Milstein, Organometallics 2004, 23, 4026–4033; c) G. R. A. Adait, J. M.
Williams, Tetrahedron Lett. 2005, 46, 8233–8235; d) W. Baratta, G. Bossi,
E. Putignano, P. Rigo, Chem. Eur. J. 2011, 17, 3474–3481; e) S. Shahane,
C. Fischmeister, C. Bruneau, Catal. Sci. Technol. 2012, 2, 1425–1428;
f) J. Yuan, Y. Sun, G.-A. Yu, C. Zhao, N.-F. She, S.-L. Mao, P.-S. Huang,
Z.-J. Han, J. Yin, S.-H. Liu, Dalton Trans. 2012, 41, 10309–10316; g) I. Dutta,
A. Sarbajna, P. Pandey, S. M. Wahidur Rahaman, K. Singh, J. K. Bera, Orga-
nometallics 2016, 35, 1505–1513; h) Z. Wang, B. Pan, Q. Liu, E. Yue, G. A.
Solan, Y. Maa, W.-H. Sun, Catal. Sci. Technol. 2017, 7, 1654–1661.
Ruthenium and osmium catalysts operating under base-free conditions:
a) J. van Buijtenen, J. Meuldijk, J. A. J. M. Vekemans, L. A. Hulshof, H.
Kooijman, A. L. Spek, Organometallics 2006, 25, 873; b) J. Zhang, E. Balar-
aman, G. Leitus, D. Milstein, Organometallics 2011, 30, 5716–5724; c) S.
Muthaiah, S. H. Hong, Adv. Synth. Catal. 2012, 354, 3045–3053; d) K.-N. T.
Tseng, J. W. Kampf, N. K. Szymczak, Organometallics 2013, 32, 2046–
2049; e) M. Delgado-Rebollo, D. Canseco-Gonzalez, M. Hollering, H. Muel-
ler-Bunz, M. Albrecht, Dalton Trans. 2014, 43, 4462–4473; f) M. L. Buil,
M. A. Esteruelas, M. Pilar Gay, M. Gomez-Gallego, A. I. Nicasio, E. Oñate,
A. Santiago, M. A. Sierra, Organometallics 2018, 37, 603–617.
[11]
Acknowledgments
The authors acknowledge the China Scholarship Council for
grants to S. W. and L. G.
[12]
[13]
Rhodium catalysts: a) X. Wang, C. Wang, Y. Liua, J. Xiao, Green Chem.
2016, 18, 4605–4610; b) L. Munjanja, H. Yuan, W. W. Brennessel, W. D.
Jones, J. Organomet. Chem. 2017, 847, 28–32.
Cobalt catalysts operating under base-free conditions, see: a) G. Zhang,
K. V. Vasudevan, B. L. Scott, S. K. Hanson, J. Am. Chem. Soc. 2013, 135,
8668–8681; b) G. Zhang, S. K. Hanson, Org. Lett. 2013, 15, 650–653; c) S.
Xu, L. M. Alhthlol, K. Paudel, E. Reinheimer, D. L. Tyer, D. K. Taylor, A. M.
Smith, J. Holzmann, E. Lozano, K. Ding, Inorg. Chem. 2018, 57, 2394–
2397.
Keywords: Dehydrogenation · Alcohols · Homogeneous
catalysis · Iridium · Reaction mechanisms
[1] a) T. C. Johnson, D. J. Morris, M. Wills, Chem. Soc. Rev. 2010, 39, 81;
b) G. E. Dabereirer, R. H. Crabtree, Chem. Rev. 2010, 110, 681.
[2] a) A. Dobson, S. D. Robinson, J. Organomet. Chem. 1975, 87, c52;
b) A. Dobson, S. D. Robinson, Inorg. Chem. 1977, 16, 137.
[14]
[15]
Iron catalysts, see: a) H. Song, B. Kang, S. H. Hong, ACS Catal. 2014, 4,
2889–2895; b) S. Sinha, S. Das, R. Sikari, S. Parua, P. Brandaõ, S. Dem-
eshko, F. Meyer, N. D. Paul, Inorg. Chem. 2017, 56, 14084–14100.
Iron catalyst operating under base-free conditions: a) S. Chakraborty,
P. O. Lagaditis, M. Förster, E. A. Bielinski, N. Hazari, M. C. Holthausen, W. D.
Jones, S. Schneider, ACS Catal. 2014, 4, 3994–4003.
[3] a) D. Morton, D. J. Cole–Hamilton, J. Chem. Soc. Chem. Commun. 1987,
249; b) D. Morton, D. J. Cole–Hamilton, J. Chem. Soc. Chem. Commun.
1988, 1155.
[4] a) H. Junge, M. Beller, Tetrahedron Lett. 2005, 46, 1031; b) H. Junge, B.
Loges, M. Beller, Chem. Commun. 2007, 522; c) M. Nielsen, A. Kamer, D.
Cozzula, H. Junge, S. Gladiali, M. Beller, Angew. Chem. Int. Ed. 2011, 50,
Eur. J. Org. Chem. 0000, 0–0
4
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim