Table 4 Results for the photooxidation of various alkanes catalyzed by W10/C8-AP-SBA using dioxygena
Entry
Substrate
Reaction time/h
Conv. (mol%)
Major product (selectivity, mol%)
1
2
3
4
Ethylbenzene
Propylbenzene
Butylbenzene
Cumene
Diphenylmethane
Cyclohexyl-Benzene
Ethylbenzene
7
8
6
8
12
6
97
81
44
87
78
28
89
Acetophenone (99)
Propiophenone (90.8)
Butyrophenone (50.5)
Acetophenone (51), 1,1-dimethylbenzyl alcohol (47)
Benzophenone (95.3)
5
6
3-Phenylcyclohexanone (64), 4-phenylcyclohexanone (25)
Acetophenone (97)
7b
7
a
b
Reaction conditions: S/C = 300, 13 mL CH3CN–H2O (v/v) = 1 : 1 as solvent, oxygen flow = 3 mL minÀ1, temperature 5–10 1C. Using air as
oxidant.
Lett., 2004, 6, 3577; (c) J. Y. Qi, H. X. Ma, X. J. Li, Z. Y. Zhou,
M. C. K. Choi, A. S. C. Chan and Q. Y. Yang, Chem. Commun.,
2003, 1294.
3 (a) B. Meunier and A. Sorokin, Acc. Chem. Res., 1997, 30, 470;
(b) O. Legrini, E. Oliveros and A. M. Braun, Chem. Rev., 1993, 93,
671.
Scheme 1
4 (a) M. T. Pope, Heteropoly and Isopoly Oxometalates, Springer-
Verlag, New York, 1983; (b) C. L. Hill and C. M. Prosser-
McCartha, Photosensitization and Photocatalysis using Inorganic
and Organometallic Compounds, Kluwer Academic Publishers,
Dordrecht, 1993; (c) A. Maldotti, A. Molinari and R. Amadelli,
Chem. Rev., 2002, 102, 3811.
5 (a) Chemical ReViews, Polyoxometalates, ed. C. L. Hill, American
Chemical Society, Washington DC, 1998; (b) A. Hiskia,
A. Mylonas and E. Papaconstantinou, Chem. Soc. Rev., 2001,
30, 62.
6 (a) M. Bonchio, M. Carraro, G. Scorrano and A. Bagno, Adv.
Synth. Catal., 2004, 346, 648; (b) R. F. Renneke, M. Kadkhodayan,
M. Pasquali and C. L. Hill, J. Am. Chem. Soc., 1991, 113, 8357.
7 (a) Z. Zheng and C. L. Hill, Chem. Commun, 1998, 2467;
(b) S. Esposti, D. Dondi, M. Fagnoni and A. Albini, Angew.,
Chem. Int. Ed, 2007, 46, 2531; (c) M. D. Tzirakis and
M. Orfanopoulos, Org. Lett., 2008, 10, 873.
8 (a) A. Maldotti, A. Molinari, G. Varani, M. Lenarda, L. Storaro,
F. Bigi, R. Maggi, A. Mazzacani and G. Sartori, J. Catal., 2002,
209, 210; (b) A. Molinari, R. Amadelli, A. Mazzacani, G. Sartori
and A. Maldotti, Langmuir, 2003, 18, 5400.
The selective and facile oxidation of cyclohexane to cyclo-
hexanone is also a highly valuable transformation in organic
synthesis for both laboratory and industrial manufacturing,
since the oxygenated products of cyclohexane are important
intermediates in the production of e-caprolactam and adipic
acid which are used in the manufacture of nylon-6 and nylon-66
polymers.19 The development of an efficient catalytic system to
achieve this goal has attracted considerable effort recently.8,20
4À
Given the excellent chemoselectivity of heterogenized W10O32
for ethylbenzene oxygenation, it was decided to investigate
whether W10/C8-AP-SBA could provide a viable solution to
this challenge. The result showed that W10/C8-AP-SBA
mediated photooxygenation can afford highly efficient photo-
catalytic oxidation of cyclohexane to cyclohexanone (Scheme 1).
It is remarkable that 100% chemoselectivity in terms of cyclo-
hexanone production can be achieved for cyclohexane
conversion. Such reaction exclusivity, notably the absence of
cyclohexanol and any other auotooxidation products, is unique
when compared with the conventional catalytic systems.8,20
In conclusion, we have demonstrated that W10O324À hetero-
genized on hydrophobically modified SBA-15 has great
potential for photooxygenation of a range of aryl alkanes to
corresponding ketones under mild conditions. This catalyst
has been proven to be highly efficient and chemoselective in
the photooxygenation of ethylbenzene and cyclohexane. The
efficiency and stability of the catalyst has also been demon-
strated convincingly by conducting six successive runs without
appreciable drop in the reaction rate.
9 F. Bigi, A. Corradini, C. Quarantelli and G. Sartori, J. Catal.,
2007, 270, 222.
10 (a) M. Bonchio, M. Carraro, G. Scorrano and A. Bagno, Adv.
Synth. Catal., 2003, 345, 1119; (b) M. Carraro, M. Gardan,
G. Scorrano, E. Orioli, E. Fontananova and M. Bonchio, Chem.
Commun., 2006, 4533; (c) M. Bonchio, M. Carraro, M. Gardan,
G. Scorrano, E. Drioli and E. Fontananova, Top. Catal., 2006, 40,
133.
11 (a) Y. Guo, C. Hu, X. Wang, Y. Wang, Y. Zou, H. Ding and
S. Feng, Chem. Mater., 2001, 13, 4058; (b) Y. Guo and C. Hu,
J. Mol. Catal. A: Chem., 2007, 262, 136.
12 Z. L. Lu, E. Lindner and H. A. Mayer, Chem. Rev., 2002, 102,
3543.
13 D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson,
B. F. Chmelka and G. D. Stucky, Science, 1998, 279, 548.
14 R. Y. Zhang, W. Ding, B. Tu and D. Y. Zhao, Chem. Mater., 2007,
19, 4379.
15 (a) K. Inumaru, T. Ishihara, Y. Kamiya, T. Okuhara and
S. Yamanaka, Angew. Chem., Int. Ed., 2007, 46, 7625;
(b) A. Maldotti, A. Molinari and F. Bigi, J. Catal., 2008, 253, 312.
16 C. Tanielian, Coord. Chem. Rev., 1998, 178–180, 1165.
17 H. Park and W. Choi, Catal. Today, 2005, 101, 291.
18 (a) D. Attanasio, L. Suber and K. Thorslund, Inorg. Chem., 1991,
30, 590; (b) I. N. Lykakis and M. Orfanopoulos, Tetrahedron Lett.,
2004, 45, 7645.
19 H. H. Szmant, Organic Building Blocks of the Chemical Industry,
Wiley, New York, 1989.
20 (a) R. Zhao, D. Ji, G. M. Lv, G. Qian, L. Yan, X. L. Wang and
J. S. Suo, Chem. Commun., 2004, 904; (b) Y. Shiraishi, Y. Teshima
and T. Hirai, Chem. Commun., 2005, 4569.
Financial support by the National Natural Science Founda-
tion of China (20633030, 20721063 and 20873026), the Shanghai
Science & Technology Committee (07QH14003) and Shanghai
Education Committee (06SG03) is kindly acknowledged.
Notes and references
1 (a) A. E. Shilov and G. B. Shul’pin, Activation and Catalytic
Reactions of Saturated Hydrocarbons in the Presence of
Metal Complexes, Kluwer, Boston, 2000; (b) K. I. Goldberg and
A. S. Goldman, Activation and Functionalization of C–H Bonds,
American Chemical Society, Washington, DC, 2004.
2 (a) B. K. Das and J. H. Clark, Chem. Commun, 2000, 605;
(b) K. Kamata, J. Kasai, K. Yamaguchi and N. Mizuno, Org.
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 2171–2173 | 2173