January 2011
Nanostructured Alumina
243
2S. C. Tjong and H. Chen, ‘‘Nanocrystalline Materials and Coatings,’’ Mater.
Sci. Eng. R, 44, 1–88 (2004).
30A. El-Himri, F. Sapin
Molybdenum Bimetallic Interstitial Nitride,’’ J. Mater. Chem., 11, 2311–4
(2001).
˜
a, R. Iban
˜
ez, and A. Beltran, ‘‘Pd2Mo3N: A New
3J. H. He and J. M. Schoenung, ‘‘Nanostructured Coating,’’ Mater. Sci. Eng. A,
336, 274–319 (2002).
31R. X. Valenzuela, G. Bueno, A. Solbes, F. Sapin
˜
a, E. Martı
n, ‘‘Nanostructured Ceria-Based Catalysts for Oxydehydrogenation of
Ethane with CO2,’’ Top Catal, 15, 181–8 (2001).
32D. Vie, N. Valero, E. Martinez, F. Sapin
a, J. V. Folgado, and A. Beltran, ‘‘A
nez, and V. Cortes-
´ ´
4M. D. Salvador, J. J. Candel, V. Bonache, F. Segovia, V. Amigo, E. Sanchez,
and V. Cantavella, ‘‘Comportamiento a desgaste de recubrimientos de WC pro-
yectados por plasma a partir de polvos micro y nanoestructurados,’’ Revista de
Metalurgia, 44, 222–32 (2008).
Corbera
´
˜
New Approach to the Synthesis of Intermetallic Compounds: Mild Synthesis of
Submicrometric CoxMy (M5 Mo, W; x:y 5 3:1 and 7:6) Particles by Direct Re-
duction of Freeze-Dried Precursors,’’ J. Mater. Chem., 12, 1017–21 (2002).
33J. Zang, J. He, Y. Dong, X. Li, and D. Yan, ‘‘Microstructure Characteristics
of Al2O3–13 wt.% TiO2 Coating Plasma Spray Deposited with Nanocrystalline
Powders,’’ J. Mater. Process. Technol., 197 [1–3] 31–5 (2008).
5Y. Wang, W. Tian, and Y. Yang, ‘‘Thermal Shock Behavior of Nanostructured
and Conventional Al2O3/13 wt% TiO2 Coatings Fabricated by Plasma Spraying,’’
Surf. Coat. Technol., 201, 7746–54 (2007).
6J. H. He and J. M. Schoenung, ‘‘A Review on Nanostructured WC–Co Coat-
ings,’’ Surf. Coat. Technol., 157, 72–9 (2002).
7E. H. Jordan, M. Gell, Y. H. Sohn, D. Goberman, L. Shaw, S. Jiang, M.
Wang, T. D. Xiao, Y. Wang, and P. Strutt, ‘‘Fabrication and Evaluation of
Plasma Sprayed Nanostructured Alumina–Titania Coatings with Superior Prop-
erties,’’ Mater. Sci. Eng. A, 301, 80–9 (2001).
34J. Zang, J. He, Y. Dong, X. Li, and D. Yan, ‘‘Microstructure and Properties of
A12O3–13 % TiO2 Coatings Sprayed Using Nanostructured Powders,’’ Rare Met.,
26, 391–7 (2007).
35M. Gell, E. H. Jordan, Y. H. Sohn, D. Goberman, L. Shaw, and T. D. Xiao,
‘‘Development and Implementation of Plasma Sprayed Nanostructured Ceramic
Coatings,’’ Surf. Coat. Technol., 146–147, 48–54 (2001).
8X. L. Jiang, C. B. Liu, and F. Lin, ‘‘Overview on the Development of Nano-
structured Thermal Barrier Coatings,’’ J. Mater. Sci. Technol., 23, 449–56 (2007).
9F. L. Trifa, G. Montavon, and C. Coddet, ‘‘On the Relationships Between the
Geometric Processing Parameters of APS and the Al2O3–TiO2 Deposit Shapes,’’
Surf. Coat. Technol., 195, 54–69 (2005).
36V. Primo-Martı
´
n, ‘‘DRXWin & CreaFit 2.0: Graphical and Analytical Tools
for Powder XRD Patterns,’’ Powder Diffrac. 14, 70–3 (1999).
37A. K. West, Solid State Chemistry and Its Applications. John Wiley and Sons,
Chichester, UK, 1984.
10S. Guessasma and C. Coddet, ‘‘Microstructure of APS Alumina–Titania
Coatings Analysed Using Artificial Neural Network,’’ Acta Mater., 52 [17]
5157–64 (2004).
38R. McPherson, ‘‘On the Formation of Thermally Sprayed Alumina Coat-
ings,’’ J. Mater. Sci., 15, 3141–9 (1980).
11S. Guessasma and M. Bounazef, ‘‘Experimental Design to Study the Effect of
APS Process Parameters on Friction Behavior of Alumina–Titania Coatings,’’
Adv. Eng. Mater., 6, 907–10 (2004).
39G. N. Heintze and S. Uematsu, ‘‘Preparation and Structures of
Plasma-Sprayed g- and a-Al2O3 Coatings,’’ Surf. Coat. Technol., 50, 213–22
(1992).
12H. Choi and C. Lee, ‘‘Responses of an Atmospheric Plasma Sprayed (APS)
Alumina–Titania Coating to Scratch Wear,’’ J. Ceram. Process. Res., 5, 214–22
(2004).
40I. Levin and D. J. Brandon, ‘‘Metastable Alumina Polymorphs: Crystal Struc-
tures and Transition Sequences,’’ J. Am. Ceram. Soc., 81, 1995–2012 (1998).
41C. Wolverton and K. C. Hass, ‘‘Phase Stability and Structure of Spinel-Based
Transition Aluminas,’’ Phys. Rev. B, 63 [024102] 1–16 (2000).
13M. Bounazef, S. Guessasma, G. Montavon, and C. Coddet, ‘‘Effect of APS
Process Parameters on Wear Behaviour of Alumina–Titania Coatings,’’ Mater.
Lett., 58, 2451–5 (2004).
42S.-H. Cai, N. Rashkeev, S. T. Pantelides, and K. Sohlberg, ‘‘Phase Transfor-
mation Mechanism between g- and y-Alumina,’’ Phys. Rev. B, 67 [224104] 1–10
(2003).
14H. Choi, C. Lee, and H. Kim, ‘‘Effects of the Plasma Gas Composition on the
Coating Formation and Coating Properties of the APS Al2O3–TiO2 Coating,’’ J.
Ceram. Process., 3, 210–5 (2002).
43G. Paglia, C. E. Buckley, A. L. Rohl, B. A. Hunter, R. D. Hart, J. V. Hanna,
and L. T. Byrne, ‘‘Tetragonal Structure Model for Boehmite-Derived g-Alumina,’’
Phys. Rev. B, 68 [144110] 1–11 (2003).
15R. S. Lima and B. R. Marple, ‘‘Thermal Spray Coatings Engineered from Nano-
structured Ceramic Agglomerated Powders for Structural, Thermal Barrier and Bio-
medical Applications: A Review,’’ J. Therm. Spray Technol., 16, 40–62 (2007).
16P. Fauchais, G. Montavon, and G. Bertrand, ‘‘From Powders to Thermally
Sprayed Coatings,’’ J. Therm. Spray Technol., 19, 56–80 (2010).
17C. C. Koch, Nanostructured Materials: Processing, Properties and Applica-
tions, 2nd edition, Taylor & Francis, Norwich, 2006.
44G. Paglia, C. E. Buckley, A. L. Rohl, R. D. Hart, K. Winter, A. J. Studer, B.
A. Hunter, and J. V. Hanna, ‘‘Boehmite Derived g-Alumina System. 1. Structural
Evolution with Temperature, with the Identification and Structural Determination
of a New Transition Phase, g0-Alumina,’’ Chem. Mater., 16, 220–36 (2004).
45G. Paglia, C. E. Buckley, T. J. Udovic, A. L. Rohl, F. Jones, C. F. Maitland,
and J. Connolly, ‘‘Boehmite-Derived g-Alumina System. 2. Consideration of Hy-
drogen and Surface Effects,’’ Chem. Mater., 16, 1914–23 (2004).
46G. Paglia, A. L. Rohl, C. E. Buckley, and J. D. Gale, ‘‘Determination of the
Structure of g-Alumina from Interatomic Potential and First-Principles Calcula-
tions: The Requirement of Significant Numbers of Nonspinel Positions to Achieve
an Accurate Structural Model,’’ Phys. Rev. B, 71 [224115] 1–16 (2005).
47S. V. Tsybulya and G. N. Kryukova, ‘‘Nanocrystalline Transition Aluminas:
Nanostructure and Features of X-Ray Powder Diffraction Patterns of Low-Tem-
perature Al2O3 Polymorphs,’’ Phys. Rev. B, 77 [024112] 1–13 (2008).
48P. Ayyub, V. R. Palkar, S. Chattopadhyay, and M. Multani, ‘‘Effect of Crys-
tal Size Reduction on Lattice Symmetry and Cooperative Properties,’’ Phys. Rev.
B, 51, 6135–8 (1995).
18C. N. R. Rao, A. Muller, and A. K. Cheetham, ‘‘Nanomaterials: An
¨
Introduction’’; pp. 1–11 in The Chemistry of Nanomaterials: Synthesis, Properties
and Applications, Edited by C. N. R. Rao. A. Muller, and A. K. Cheetham. Wiley-
VCH, Weinheim, 2004.
¨
19G. Chen and W. Wang, ‘‘Role of Freeze Drying in Nanotechnology,’’ Drying
Technol., 25, 29–35 (2007).
20C. Tallon, R. Moreno, and M. I. Nieto, ‘‘Synthesis of g-Al2O3 Nanopowders
by Freeze-Drying,’’ Mater. Res. Bull., 41, 1520–9 (2006).
21W. M. Zeng, A. A. Rabelo, and R. Tomasi, ‘‘Synthesis of a-Al2O3 Nano-
powder by Sol–Freeze Drying Method,’’ Adv. Powder Technol., 189, 16–20 (2001).
22N. Nikolic, L. Mancic, Z. Marinkovic, O. Milosevic, and M. M. Ristic,
‘‘Preparation of Fine Oxide Ceramic Powders by Freeze-Drying,’’ Ann. Chim. Sci.
Mat., 26, 35–41 (2001).
49R. C. Garvie, ‘‘The Occurrence of Metastable Tetragonal Zirconia as a Crys-
tallite Size Effect,’’ J. Phys. Chem., 69, 1238–43 (1965).
23O. A. Shlyakhtin, Y.-J. Oh, and Y. D. Tretyakov, ‘‘Preparation of Dense
La0.7Ca0.3MnO3 Ceramics from Freeze-Dried Precursors,’’ J. Eur. Ceram. Soc.,
20, 2047–54 (2000).
50A. A. Gribb and J. F. Banfield, ‘‘Particle Size Effects on Transformation Ki-
netics and Phase Stability in Nanocrystalline TiO2,’’ Am. Mineral., 82, 717–28
(1997).
24Y. D. Tretyakov, N. N. Oleynikov, and O. A. Shlyakhtin, Cryochemical
Technology of Advanced Materials. Chapman & Hall Ltd., London, 1997.
51S. Blonski and S. H. Garofaini, ‘‘Molecular Dynamics Simulations of a-Al-
umina and g-Alumina Surfaces,’’ Surf. Sci., 295, 263–74 (1993).
52J. M. McHale, A. Navrotsky, and A. J. Perrotta, ‘‘Effects of Increased Surface
Area and Chemisorbed H2O on the Relative Stability of Nanocrystalline g-Al2O3
and a-Al2O3,’’ J. Phys. Chem. B, 101, 603–13 (1997).
25Y. Ng-Lee, F. Sapin
˜ ˜
a, E. Martinez-Tamayo, J. V. Folgado, R. Ibanez, F.
Lloret, and A. Segura, ‘‘Low-Temperature Synthesis, Structure and Magnetore-
sistance of Submicrometric La1ꢁxKxMnO31d Perovskites,’’ J. Mater. Chem., 7,
1905–9 (1997).
53J. M. McHale, A. Auroux, A. J. Perrotta, and A. Navrotsky, ‘‘Surface En-
ergies and Thermodynamic Phase Stability in Nanocrystalline Aluminas,’’ Science,
277, 788–91 (1997).
26T. Boix, Z. El Fadli, F. Sapin
˜
a, E. Martinez, A. Beltran, J. Vergara, R. J.
Ortega, and K. V. Rao, ‘‘Electronic Properties of Mixed Valence Manganates: The
Role of the Cationic Vacancies,’’ Chem. Mater., 10, 1569–75 (1998).
54M. R. Ranade, A. Navrotsky, H. Z. Zhang, J. F. Banfield, S. H. Elder, A.
Zaban, P. H. Borse, S. K. Kulkarni, G. S. Doran, and H. J. Whitfield, ‘‘Energetics
of Nanocrystalline TiO2,’’ Proc Natl Acad Sci, 99 [Suppl. 2] 6476–81 (2002).
55M. W. Pitcher, S. V. Ushakov, A. Navrotsky, B. F. Woodfield, G. Li, J. Boe-
rio-Goates, and B. M. Tissue, ‘‘Energy Crossovers in Nanocrystalline Zirconia,’’ J.
Am. Ceram. Soc., 88, 160–7 (2005).
27Z. El Fadli, E. Coret, F. Sapin
˜
a, E. Martinez, A. Beltran, and D. Beltran,
‘‘Low Temperature Synthesis, Structure and Magnetic Properties of La0.85
(Na1ꢁxKx)0.15MnO3 Perovskites: The Role of A Cation Size Disparity in the Elec-
tronic Properties of Mixed-Valence Manganates,’’ J. Mater. Chem., 9, 1793–9
(1999).
28A. El-Himri, M. Cairols, S. Alconchel, F. Sapin
˜
A. Beltran, ‘‘Freeze-Dried Precursor-Based Synthesis of New Vanadium–Molyb-
a, R. Iban
˜
ez, D. Beltran, and
56A. Navrotsky, L. Mazeina, and J. Majzlan, ‘‘Size-Driven Structural and Ther-
modynamic Complexity in Iron Oxides,’’ Science, 319, 1635–8 (2008).
57D. Zois, A. Lekatou, M. Vardavoulias, I. Panagiotopoulos, and A.
Vazdirvanidis, ‘‘A Comparative Microstructural Investigation of Nanostructured
and Conventional Al2O3 Coatings Deposited by Plasma spraying,’’ J. Therm.
denum Oxynitrides,’’ J. Mater. Chem., 9, 3167–71 (1999).
29A. El-Himri, F. Sapin
˜ ˜
a, R. Ibanez, and A. Beltran, ‘‘Synthesis of New Vana-
dium–Chromium and Chromium–Molybdenum Oxynitrides by Direct Ammo-
nolysis of Freeze-Dried Precursors,’’ J. Mater. Chem., 10, 2537–41 (2000).
Spray Technol., 17, 887–94 (2008).
&