Angewandte
Chemie
by the structure of the diamine auxiliary as well as the
substituent in the substrate. In general, modifier 1 shows
better enantioselectivity but lower activity than modifier 2.
The use of the S diamine affords the R-configurated alcohol
product, whereas the R diamine gives the S-configured
alcohol. Ortho substituents on acetophenone do not improve
the activity of the asymmetric hydrogenation because of the
steric bulk, but the activity increases with the decreasing
electronegativity of the halogen (Table 1, entries 4–9). Our
system is smilar to the cinchona-modified Pt/Al2O3 system[1]
in that the enantioselectivitiy gradually increases as the
reaction progresses (Table 1, entries 10 and 11). The highest
enantiomeric excess was obtained for the hydrogenation of
2’-chloroacetophenone by using diamine 1 as the chiral
modifier (Table 1, entry 6). Other substrates were also
tested and it was found that when the substituent is in the
meta or para position (Table 1, entry 15–17), the degree of the
enantioselection was obviously decreased in comparison to
the ortho-substituted counterparts. The enantioselectivity
also decreased by increasing the bulkiness of the alkyl
group from methyl or primary alkyl to isopropyl (Table 1,
entries 1 and 2, and 18–20). The effect of the steric bulk and
the electronic nature of the substrate influence the activity
and the enantioselectivity of the reaction.
223; e) D. Y. Murzin, P. Maki-Arvela, E. Toukoniitty, T. Salmi,
[2] a) Y. Orito, S. Imai, S. Niwa, J. Chem. Soc. Jpn. 1979, 1118; b) Y.
Orito, S. Imai, S. Niwa, J. Chem. Soc. Jpn. 1980, 670.
[3] a) A. Vargas, D. Ferri, N. Bonalumi, T. Mallat, A. Baiker, Angew.
b) M. von Arx, T. Mallat, A. Baiker in Supported Catalysts and
Their Applications (Eds.: D. C. Sherrington, A. P. Kybett), The
Royal Society of Chemistry, Cambridge, 2001, p. 247; c) T.
Varga, K. Felfꢀldi, P. Forgꢁ, M. Bartꢁk, J. Mol. Catal. A 2004,
216, 181.
[4] K. K. Acprzak, J. Gawroꢂski, Synthesis 2001, 7, 961.
Chiral Catalyst Immobilization and Recycling (Eds.: D. E.
De Vos, I. F. J. Vankelecom, P. A. Jacobs), Wiley-VCH, Wein-
heim, 2000, p. 173; c) Y. Nitta, J. Watanabe, T. Okuyama, T.
b) S. Jansat, M. Gomez, K. Philippot, G. Muller, E. Guiu, C.
1592; c) G. Schmid, Clusters and Colloids; VCH, Weinheim,
1994; d) G. Schmid, R. Pfeil, R. Boese, F. Bandermann, S. Meyer,
[8] a) M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, J.
[9] a) Y. L. Huang, J. R. Chen, H. Chen, R. X. Li, Y. Z. Li, L.-e. Min,
X. J. Li, J. Mol. Catal. A. 2001, 170, 143; b) Y. L. Huang, Y. Z. Li,
J. Y. Hu, P. M. Cheng, H. Chen, R. X. Li, X. J. Li, C. W. Yip,
A. S. C. Chan, J. Mol. Catal. A 2002, 189, 219; c) H. X. Ma, H.
Chen, Q. Zhang, X. J. Li, J. Mol. Catal. A. 2003, 196, 131; d) W.
Xiong, H. X. Ma, Y. Y. Hong, H. Chen, X. J. Li, Tetrahedron:
Chen, R. X. Li, X. J. Li, Appl. Catal. A 2008, 339, 93.
[10] T. Ohkuma, H. Ooka, S. Hashiguchi, T. Ikariya, R. Noyori, J.
[11] a) B. Pawelec, R. M. Navarro, J. M. Campos-Martin, A. Lꢁpe-
73; b) P. Castaꢂo, B. Pawelec, J. L. G. Fierro, J. M. Arandes, J.
Bilbao, Appl. Catal. A 2006, 315, 101.
In conclusion we demonstrated the facile preparation of a
supported iridium catalyst which is stabilized by PPh3. When
modified by a chiral diamine, derived from cinchona alka-
loids, this catalyst exhibits a high activity and high enantio-
selectivity for the hydrogenation of simple aromatic ketones,
especially for ortho-substituted aromatic ketones. The work
reported herein provides a new direction for asymmetric
synthesis. Additional work is currently in progress in this and
related areas.
Experimental Section
Ph3P stabilized Ir/SiO2 catalyst was prepared with a slight modifica-
tion to our previous reported method.[9] Under an argon atmosphere,
a solution of SiO2 (1.0 g, the average pore size is 4.5 nm, SBET
=
135.9 m2 gÀ1), H2IrCl6 (0.168 mmol) and PPh3 (0.336 mmol) in
iPrOH (30 mL) was stirred at room temperature for 24 h, after
which formaldehyde (5 mL) was added and the mixture heated at
1108C with stirring for 5 h. The mixture was then cooled to room
temperature and the solid was then separated and dried under
vacuum at room temperature for 6 h to give the catalyst 3%Ir/SiO2/
2tpp (the average pore size is 3.9 nm, SBET = 125.6 m2 gÀ1. The
reduction of the average pore size and SBET indicates the attachment
of the Ir-tpp to SiO2 surface). Similarly, other catalysts, with different
stabilizers, were prepared by the same procedure.
[13] a) L. Yan, Y. J. Ding, H. J. Zhu, J. M. Xiong, T. Wang, Z. D. Pan,
L. W. Lin, J. Mol. Catal. A 2005, 234, 1; b) D. F. Han, X. H. Li,
H. D. Zhang, Z. M. Liu, G. S. Hu, C. Li, J. Mol. Catal. A 2008,
283, 15; c) K. V. Kovtunov, I. E. Beck, V. I. Bukhtiyarov, I. V.
Received: April 17, 2008
Revised: July 7, 2008
Published online: August 8, 2008
[14] a) H. Y. Chen, J. M. Hao, H. J. Wang, C. Y. Xi, X. C. Meng, S. X.
Cai, F. Y. Zhao, J. Mol. Catal. A 2007, 278, 6; b) R. A. Sheldon,
[15] A. Perosa, P. Tundo, M. Selva, J. Mol. Catal. A 2002, 180, 169.
[16] T. Marzialetti, M. Oportus, D. Ruiz, J. L. G. Fierro, P. Reyes,
Keywords: alkaloids · asymmetric catalysis · iridium · ketones ·
.
supported catalysts
Angew. Chem. Int. Ed. 2008, 47, 9240 –9244
ꢀ 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim