Ligand and Metal Effects on Assembly of Metal-Organic Frameworks
(10 mL) was stirred for 20 min in air, then transferred and sealed
in a 23-mL Teflon reactor, which was heated at 150 °C for 48 h.
The solution was then cooled to room temperature at a rate of
5 °Ch–1 to yield a very fine pale yellow crystalline product (1) in
50% yield based on Mn. C26H20MnN2O6 (511.38): calcd. C 61.29,
[1]
a) S. R. Batten, R. Robson, Angew. Chem. Int. Ed. 1998, 37,
1460–1494; b) V. A. Blatov, L. Carlucci, D. M. Proserpio, Crys-
tEngComm 2004, 6, 377–395; c) I. A. Baburin, V. A. Blatov, L.
Carlucci, G. Ciani, D. M. Proserpio, J. Solid State Chem. 2005,
178, 2471–2493; d) L. Carlucci, G. Ciani, D. M. Proserpio, Co-
ord. Chem. Rev. 2003, 246, 247–289; e) X.-H. Bu, M.-L. Tong,
H. C. Chang, S. Kitagawa, S. R. Batten, Angew. Chem. Int. Ed.
2004, 43, 192–196; f) M.-L. Tong, X.-L. Chen, S. R. Batten, J.
Am. Chem. Soc. 2003, 125, 16170–16171; g) A. N. Khlobystov,
A. J. Blake, N. R. Champness, D. A. Lemenovskii, A. G. Ma-
jouga, N. V. Zyk, M. Schröder, Coord. Chem. Rev. 2001, 222,
155–192; h) B. Moulton, M. J. Zaworotko, Chem. Rev. 2001,
101, 1629–1658.
a) S. R. Batten, CrystEngComm 2001, 3, 67–73; b) B. F. Abra-
hams, S. R. Batten, M. J. Grannas, H. Hamit, B. F. Hoskins,
R. Robson, Angew. Chem. Int. Ed. 1999, 38, 1475–1477; c)
O. R. Evans, W. Lin, Acc. Chem. Res. 2002, 35, 511–512; d)
O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Ed-
daoudi, J. Kim, Nature 2003, 423, 705–714; e) S. R. Batten, J.
Solid State Chem. 2005, 178, 2475–2479; f) P. D. Akrivos, Co-
ord. Chem. Rev. 2001, 213, 181–210; g) H. Fleischer, Coord.
Chem. Rev. 2005, 249, 799–827.
H 3.56, N 5.50; found C 61.52, H 3.28, N 5.62. IR (KBr): ν = 3469
˜
(m), 3063 (w), 2298 (w), 1618 (m), 1597 (s), 1405 (vs), 1273 (m),
1064 (m), 882 (vs), 608 (m), 517 (w) cm–1. The synthesis of 2 was
performed using the same procedure as for complex 1 except that
MnSO4·6H2O was replaced by CoSO4·7H2O (0.027 g,0.1 mmol).
Yield: 58% based on Co. C26H20CoN2O6 (515.37): calcd. C 60.59,
H 3.91, N 5.44; found C 59.88, H 4.11, N 5.23. IR (KBr): ν = 3461
˜
(m), 3058 (w), 2297 (w), 1607 (m), 1589 (s), 1410 (vs), 1275 (m),
1058 (m), 881 (vs), 605 (m), 508 (w) cm–1.
[2]
[M(oba)(N3)]n [M = Cd (3), Cu (4)]: Synthetic procedures similar
to that for 1 were used. Yield: 52% based on Cd. C24H17CdN3O5
(539.81): calcd. C 53.39, H 3.17, N 7.78; found C 53.88, H 3.41, N
7.70. IR (KBr): ν = 1608 (vs), 1552 (s), 1443 (s), 1224 (m), 858 (s)
˜
cm–1. C24H17CuN3O5 (490.95): calcd. C 58.83, H 3.29, N 8.58;
found C 53.88, H 3.34, N 7.75. Yield: ca. 55% based on Cu. IR
(KBr): ν = 1605 (vs), 1558 (s), 1446 (s), 1218 (m), 879 (s) cm–1.
˜
[3]
[4]
[5]
(ac-
{[Zn(oba)(N5)]·2H2O}n (5): A synthetic procedure similar to that
for 1 was used. Yield: 49% based on Zn. C29H25N5O7Zn (620.91):
calcd. C 56.10, H 4.06, N 11.28; found C 56.87, H 3.68, N 11.40.
cessed 21/12/07).
D. P. Martin, R. M. Supkowski, R. L. LaDuca, Inorg. Chem.
2007, 46, 7917–7922.
S. R. Batten, R. Robson, in Molecular Catenanes, Rotaxanes
and Knots, A Journey Through the World of Molecular Topology
(Eds.: J.-P. Sauvage, C. Dietrich-Buchecker), Wiley-VCH,
Weinheim, 1999, 77–105.
a) J.-K. Lu, M.-A. Lawandy, J. Li, Inorg. Chem. 1999, 38, 2695–
2704; b) C.-D. Wu, C.-Z. Lu, W.-B. Yang, S.-F. Lu, H.-H.
Zhuang, J.-S. Huang, Eur. J. Inorg. Chem. 2002, 41, 797–800;
c) R. Cao, D.-F. Sun, Y.-C. Liang, M.-C. Hong, K. Tatsumi,
Q. Shi, Inorg. Chem. 2002, 41, 2087–2094; d) S. Konar, P. S.
Mukherjee, E. Zangrando, F. Lloret, N. R. Chaudhuri, Angew.
Chem. Int. Ed. 2002, 41, 1561–1563.
a) Z. Y. Fu, X. T. Wu, J. C. Dai, L. M. Wu, C. P. Cui, S. M.
Hu, Chem. Commun. 2001, 1856–1857; b) L. Carlucci, G. Ci-
ani, D. M. Proserpio, S. Rizzato, Chem. Eur. J. 2002, 8, 1520–
1526; c) P. Ayyappan, O. R. Evans, W. Lin, Inorg. Chem. 2002,
41, 3328–3330; d) K. Biradha, M. Fujita, Chem. Commun.
2002, 1866–1867; e) Y. H. Li, C. Y. Su, A. M. Goforth, K. D.
Shimizu, K. D. Gray, M. D. Smith, H. C. zur Loye, Chem.
Commun. 2003, 1630–1631; f) L. Carlucci, G. Ciani, D. M.
Proserpio, Chem. Commun. 2004, 380–381; g) X. M. Chen,
G. F. Liu, Chem. Eur. J. 2002, 8, 4811–4817; h) M. Kondo, Y.
Irie, M. Miyazawa, H. Kawaguchi, S. Yasuc, K. Maeda, F.
Uchida, J. Organomet. Chem. 2007, 692, 136–141.
a) M. Fujita, O. Sasaki, K. Watanabe, K. Ogura, K. Yama-
guchi, New J. Chem. 1998, 22, 189–191; b) L. Carlucci, G. Ci-
ani, M. Moret, D. M. Proserpio, S. Rizzato, Angew. Chem. Int.
Ed. 2000, 39, 1506–1510; c) X. L. Wang, Q. Chao, E. B. Wang,
Z. M. Su, Chem. Eur. J. 2006, 12, 2680–2691.
a) O. D. Friedrichs, M. O’Keeffe, O. M. Yaghi, Acta Crys-
Wang, C. Qin, E.-B. Wang, Y.-G. Li, Z.-M. Su, Chem. Com-
mun. 2005, 5450–5452; d) H. K. Lee, D. W. Min, B. Y. Cho,
S. W. Lee, Bull. Korean Chem. Soc. 2004, 25, 1959–1962.
a) S. Leininger, B. Olenyyuk, P. J. Stang, Chem. Rev. 2000, 100,
853–908; b) B. Moulton, M. J. Zaworotko, Chem. Rev. 2001,
101, 1629–1658; c) J. Heo, Y. Jeon, C. A. Mirkin, J. Am. Chem.
Soc. 2007, 129, 7712–7713; d) Y. G. Li, N. Hao, E. B. Wang,
Y. Lu, C. W. Hu, L. Xu, Eur. J. Inorg. Chem. 2003, 2567–2571;
e) Q. Chu, G. X. Liu, Y. Q. Huang, X. F. Wang, W. Y. Sun,
Dalton Trans. 2007, 4302–4311; f) C. Y. Niu, B. L. Wu, X. F.
Zheng, H. Y. Zhang, H. W. Hou, Y. Y. Niu, Z. J. Li, Cryst.
Growth Des. 2008, 8, 1566–1574; g) M. Du, X. J. Jiang, X. J.
Zhao, Inorg. Chem. 2007, 46, 3984–3995; h) J. Zhang, E. Chew,
IR (KBr): ν = 13443 (v), 3303 (s), 1621 (vs), 1558 (s), 1448 (s),
˜
1217 (m), 871 (s) cm–1.
X-ray Crystallography: Single-crystal X-ray diffraction studies of
1–5 were performed with a Bruker SMART APEX II CCD dif-
fractometer equipped with graphite-monochromated Mo-Kα radia-
tion (λ = 0.71073 Å) by using an ω-2θ scan technique at room
temperature. The structures were solved by direct methods and suc-
cessive Fourier difference synthesis (SHELXS-97),[19] and refined
using the full-matrix least-squares method on F2 with anisotropic
thermal parameters for all non-hydrogen atoms (SHELXL-97).[20]
The positions of the H atoms for pyridyl rings, benzene rings and
–NH groups were generated by a riding model on idealized geome-
tries, while the H atoms of water molecules were located in differ-
ence Fourier maps. In the case of 2, the final value is not ideal,
which may be attributed to the quality of the crystal. Notably, the
goodness-of-fit for compound 4 was only 0.513, which was also
attributed to the quality of the crystal. The crystallographic data
and other pertinent information for 1–5 are summarized in Table 2.
Selected bond lengths and bond angles are listed in Table 1.
[6]
[7]
Crystallographic data for the structural analysis have been de-
posited with the Cambridge Crystallographic Data Centre:
CCDC-692071 (for 1), -692072 (for 2), -692072 (for 3), and -692074
(for 4) -692075 (for 5). These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
[8]
[9]
Supporting Information (see also the footnote on the first page of
this article): Description of the 4-crossing [2]-catenane motif, TG
curve for 1, and luminescence spectra for 3 and 5.
[10]
Acknowledgments
We gratefully acknowledge financial support of this work by the
National Natural Science Foundation of China (20471048 and
20771090), Teaching and Research Award Program for Outstand-
ing Young Teachers in Higher Education Institutes (TRAPOYT),
and Specialized Research Fund for the Doctoral Program of
Higher Education (SRFDP) (20050697005).
Eur. J. Inorg. Chem. 2009, 147–154
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
153