Y. Ito / Tetrahedron 63 (2007) 3108–3114
3113
TMB were 48 and 0%, respectively. After rotary evaporation
of the recombined photolysate, the residue was redissolved
Acknowledgements
in 3 mL of CHCl and the solution was allowed to stand at
3
room temperature for 5 days. Pale brownish yellow crystals
appeared and these were collected by filtration to obtain
The author thanks Ms. Hiromi Yoshida and Mr. Haruo Fujita
for measuring mass and 2D NMR spectra, respectively.
4
9 mg (20%) of cis-2-acetamido-2-phenylcyclohexanecarb-
oxylic acid (25). Since an HPLC peak corresponding to
5 was not observable directly after the photolysis, 25
Supplementary data
2
1
13
must have been formed during the work-up of the photoly-
sate. The assumed heterocyclic intermediate shown in
The H and C NMR spectra (Fig. 2) and the NOESY spec-
trum (Fig. 3) for cis-2-acetamido-2-phenylcyclohexanecar-
1
8
Eq. 2 may be formed via the Ritter-like reaction. The fil-
trate was separated with preparative TLC on silica gel
(
(
CHCl –MeOH 30:1 v/v), followed by preparative HPLC
3
Cosmosil 5C , 20 mm i.d.ꢂ250 mm, MeCN–H O 70:30
1
8
2
v/v). This gave 12 mg of additional 25 along with 13 mg
(
(
7%) of crude 2-phenylcyclohex-2-enecarboxylic acid
26). The total yield of 25 is 61 mg (25%) and thus the
References and notes
2
4
TON for 25 (¼25/TMB) is 5.9. Many other carboxylated
products (total 30 mg), including 2-phenylcyclohex-1-
enecarboxylic acid (27) and trans- and cis-2-hydroxy-2-
phenylcyclohexanecarboxylic acid (28), were formed in
minor amounts, judging from the H NMR, IR, MS, and
HPLC data, but these products were not further separated.
1. Our previous papers on this topic: (a) Masuda, K.; Ito, Y.;
Horiguchi, M.; Fujita, H. Tetrahedron 2005, 61, 213–229; (b)
Ito, Y.; Ushitora, H. Tetrahedron 2006, 62, 226–235; (c) Ito,
Y. Photochemistry 2002, 33, 205–212; (d) Ref. 8e.
2. (a) Komatsu, M.; Aida, T.; Inoue, S. J. Am. Chem. Soc. 1991,
113, 8492–8498; (b) Hirai, Y.; Aida, T.; Inoue, S. J. Am.
Chem. Soc. 1989, 111, 3062–3063; (c) Inoue, S.; Nukui, M.;
Kojima, F. Chem. Lett. 1984, 619–622; (d) Inoue, S.; Takeda,
N. Bull. Chem. Soc. Jpn. 1977, 50, 984–986.
3. (a) Morgenstern, D. A.; Wittrig, R. E.; Fanwick, P. E.; Kubiak,
C. P. J. Am. Chem. Soc. 1993, 115, 6470–6471; (b) Lemke,
F. R.; Delaet, D. L.; Gao, J.; Kubiak, C. P. J. Am. Chem. Soc.
1988, 110, 6904–6906; (c) Johnston, R. F.; Cooper, J. C.
Organometallics 1987, 6, 2448–2449; (d) Cocolios, P.;
Guilard, R.; Bayeul, D.; Lecomte, C. Inorg. Chem. 1985, 24,
2058–2062; (e) Kodaka, M.; Lee, A. L.; Tomohiro, T.;
Okuno, H. Chem. Express. 1990, 5, 233–236.
4. (a) Wada, Y.; Ogata, T.; Hiranaga, K.; Yasuda, H.; Kitamura, T.;
Murakoshi, K.; Yanagida, S. J. Chem. Soc., Perkin Trans. 2
1998, 1999–2004; (b) Fujiwara, H.; Kanemoto, M.; Ankyu,
H.; Murakoshi, K.; Wada, Y.; Yanagida, S. J. Chem. Soc.,
Perkin Trans. 2 1997, 317–321; (c) Sclafani, A.; Palmisano,
L.; Farneti, G. J. Chem. Soc., Chem. Commun. 1997, 529–
530; (d) Kawai, T.; Kuwabara, T.; Yoshino, K. J. Chem. Soc.
Faraday Trans. 1992, 88, 2041–2046.
1
ꢃ
H NMR (400 MHz, CD OD) d 7.44–7.40 (2H, quasi-d,
2
5: White plates, mp 245–247 C (from MeOH–acetone);
1
x
3
x
Jw7 Hz), 7.26–7.20 (2H, quasi-t, Jw7.5 Hz), 7.16–7.11
x
(
1H, quasi-t, Jw7 Hz), 3.34–3.31 (1H, m), 2.73–2.68 (2H,
m), 2.13–2.02 (1H, m), 1.9–1.83 (1H, m), 1.89 (3H, s),
1
3
1
d 176.01 (CONH), 172.18 (COOH), 146.72, 128.70,
.74–1.52 (4H, m) (Fig. 2); C NMR (100 MHz, CD OD)
3
1
2
27.52, 127.22, 59.84, 50.15, 28.07, 26.41, 23.57, 22.51,
1.92 (Fig. 2); IR (KBr) 3369 (s), 1711 (s), 1640 (s), 1545
(
(
2
s), 1374 (m), 1179 (s), 1155 (s), 1125 (s), 769 (m), 697
ꢁ
1
+
+
m) cm ; MS (EI ) m/z 261 (M , 13), 243 (11), 218 (18),
02 (93), 184 (19), 176 (31), 156 (56), 132 (100), 119
33), 104 (51), 91 (64), 77 (30), 60 (27); HRMS (EI ) calcd
+
(
for C H NO 261.1365, found 261.1367.
19
15
3
The cis configuration of CO H and NHCOMe was assigned
2
on the basis of a pronounced NOESY correlation between
the methine hydrogen (H ) of CH CO H (d 3.34–3.31)
a
a
2
and the ortho hydrogen of Ph (d 7.44–7.40) (Fig. 3). The
H NMR signal of H appeared as approximately a double
5. (a) Itoh, T.; Asada, H.; Tobioka, K.; Kodera, Y.; Matsushima,
A.; Hiroto, M.; Nishimura, H.; Kamachi, T.; Okura, I.; Inada,
Y. Bioconjug. Chem. 2000, 11, 8–13; (b) Inoue, H.; Kubo, Y.;
Yoneyama, H. J. Chem. Soc. Faraday Trans. 1991, 87,
1
a
doublet (Fig. 2), which is also consistent with the cis
structure.
2
5
553–557; (c) Mandler, D.; Willner, I. J. Chem. Soc., Perkin
Trans. 2 1988, 997–1003.
2
4
1
2
6: Colorless solid; H NMR (300 MHz, CD OD) d 7.35–
3
7
.12 (5H, m), 6.17 (1H, t, J¼3.8 Hz), 3.68 (1H, br), 2.3–1.7
6. (a) Padwa, A.; Wetmore, S. I., Jr. J. Am. Chem. Soc. 1974, 96,
2414–2421; (b) Giezendanner, H.; M €a rky, M.; Jackson, B.;
Hansen, H.-J.; Schmid, H. Helv. Chim. Acta 1972, 55, 745–748.
7. (a) Sander, W. J. Org. Chem. 1989, 54, 4265–4267; (b)
Wheland, R.; Bartlett, P. D. J. Am. Chem. Soc. 1970, 92,
ꢁ
1
+
(6H, m); IR (film) 1700 (s), 758 (s), 697 (s) cm ; MS (EI )
m/z 202 (M , 64), 156 (100), 130 (69), 115 (57), 91 (97), 77
+
+
(
33); HRMS (EI ) calcd for C H O 202.0994, found
13 14 2
2
02.0993.
6
057–6058.
8
. (a) Chateauneuf €y , J. E.; Zhang, J.; Foote, J.; Brink, J.; Perkovic,
M. W. Adv. Environ. Res. 2002, 6, 487–493; (b) Nikolaitchik,
A. V.; Rodgers, M. A.; Neckers, D. C. J. Org. Chem. 1996,
OH
Ph
Ph
CO2H
27
Ph
CO H
CO H
2
2
6
1, 1065–1072; (c) Tagaya, H.; Onuki, M.; Tomioka, Y.;
Wada, Y.; Karasu, M.; Chiba, K. Bull. Chem. Soc. Jpn. 1990,
3, 3233–3237; (d) Minabe, M.; Isozumi, K.; Kawai, K.;
2
6
trans- and cis-28
6
Yoshida, M. Bull. Chem. Soc. Jpn. 1988, 61, 2063–2066; (e)
Ito, Y.; Uozu, Y.; Matsuura, T. J. Chem. Soc., Chem.
Commun. 1988, 562–564; (f) Tazuke, S.; Kazama, S.;
x
Each peak is finely split (J¼1–2 Hz).