C O M M U N I C A T I O N S
a
a
Table 1. Development of the Catalyst System
Table 3. Scope with Regard to the Triflate Coupling Partner
entry
Cu source
Pd source
phosphine
yield/%
carboxylate
triflate
Ar
product
yield/%
b
1
CuI
”
”
”
”
”
”
”
Pd(acac)2
”
”
”
”
”
”
”
”
”
”
”
Pd(OAc)2
Pd(dba)2
PdI2
”
”
”
”
–
–
11
34
24
39
28
38
36
47
49
14
52
11
49
31
58
70
39
59
52
b
1
”
1
”
”
”
”
”
”
a
o
2b
2c
2b
2d
2e
2f
2g
2h
2i
2-naphthyl-
3-Ac-C6H4-
2-naphthyl-
Ph-
4-MeO-C6H4-
2-Me-C6H4-
4-EtC(O)-C6H4-
4-Cl-C6H4-
quinoline-8-yl-
3ab
3ac
3ob
3od
3oe
3of
3og
3oh
3oi
62
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
b
58
P(Ph)3
P(p-Tol)3
P(Cy)3
BINAP
dppb
Tol-BINAP
”
”
”
”
”
”
”
”
”
”
”
98
91
83
79
45
91
80
CuBr
CuCl2
Cu2O
0
1
2
3
4
5
6
7
8
9
c
b
”
”
”
”
”
”
”
”
7.5 mol% Cu2O, 15 mol% 1,10-phenanthroline, 3 mol% PdI2, 4.5
a
mol% Tol-BINAP, 8.0 mL of NMP, 24 h. Reaction conditions: 1
mmol of potassium carboxylate, 2 mmol of triflate, 5 mol% Cu O, 10
2
mol% 1,10-phenanthroline, 2 mol% PdI2, 6 mol% P(p-Tol)3, 4.0 mL of
NMP, 170°C, 1 h, isolated yields.
d
d,e
f
Overall, by enabling the use of triflates as carbon electrophiles,
a critical limitation of the original decarboxylative biaryl synthesis
has been overcome, namely its restriction to ortho-substituted
benzoates. Ongoing work is directed toward replacing 1,10-
phenanthroline with a customized ligand with the goal of enhancing
the decarboxylation activity of the copper, to allow for milder
reaction conditions and further widen the substrate scope.
f,g
a
Reaction conditions: 1 mmol of potassium 3-nitrobenzoate, 2 mmol
of 4-tolyl triflate, 15 mol% Cu source (7.5 mol% for Cu2O), 15 mol%
,10-phenanthroline, 3 mol% Pd source, 9 mol% phosphine (4.5 mol%
for bidentate), 4 mL of NMP, 170°C, 16 h. Yields determined by GC
using n-tetradecane as internal standard. 1 mmol of 4-bromotoluene
1
b
c
instead of the triflate. Sodium 3-nitrobenzoate instead of potassium
d
e
f
3
°
-nitrobenzoate. 24 h. 1 mmol of 4-tolyl triflate. Microwave, 190
g
Acknowledgment. We thank Saltigo GmbH and NanoKat for
financial support and the Alexander-von-Humboldt-Stiftung for a
fellowship for N.R.
C, 10 min (see Supporting Information). 3-Nitrobenzoic acid instead
of potassium 3-nitrobenzoate, 0.55 mmol of K2CO3, 250 mg of 3 Å
molecular sieves.
a
Table 2. Scope with Regard to the Carboxylate Substrates
Supporting Information Available: Experimental data and proce-
dures for all compounds. This material is available free of charge via
the Internet at http://pubs.acs.org.
References
carboxylate
Ar
product
yield/%
(1) Suzuki, A. In Metal-Catalyzed Cross-Coupling Reactions; Diederich, F.,
Stang, P. J., Eds.; Wiley-VCH: Weinheim, Germany, 1998; p 49.
(2) Miyaura, N. Top. Curr. Chem. 2002, 219, 11–59.
b
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
3-NO2-C6H4-
4-NO2-C6H4-
3-CN-C6H4-
4-CN-C6H4-
3-Me-4-NO2-C6H3-
3-Cl-C6H4-
4-MeC(O)NH-C6H4-
3-pyridinyl-
3-thienyl-
3aa
3ba
3ca
3da
3ea
3fa
3ga
3ha
3ia
3ja
3ka
3la
3ma
3na
3oa
72 (61)
68
52
58
62
40
53
41
54
(3) (a) Kosugi, M.; Sasazawa, K.; Shimizu, Y.; Migita, T. Chem. Lett. 1977,
6, 301–302. (b) Stille, J. Angew. Chem., Int. Ed. Engl. 1986, 25, 508–523.
(
(
(
4) (a) Negishi, E. I. Acc. Chem. Res. 1982, 15, 340–348. (b) Knochel, P.;
Singer, R. Chem. ReV. 1993, 93, 2117–2188.
5) Lipshutz, B. H.; Siegmann, K.; Garcia, E.; Kayser, F. J. Am. Chem. Soc.
1
993, 115, 9276–9282.
6) (a) Hiyama, T.; Hatanaka, Y. Pure Appl. Chem. 1994, 66, 1471. (b)
Denmark, S. E.; Sweis, R. F. Acc. Chem. Res. 2002, 35, 835–846.
(7) (a) Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94,
4374–4376. (b) Corriu, R. J. P.; Masse, J. P. J. Chem. Soc., Chem. Commun.
1972, 144.
2-F-C6H4-
76
80
2-MeC(O)-C6H4-
2-MeO-C6H4-
2-thienyl-
(
8) (a) Goossen, L. J.; Deng, G.; Levy, L. M. Science 2006, 313, 662–664. (b)
Goossen, L. J.; Rodr ´ı guez, N.; Melzer, B.; Linder, C.; Deng, G.; Levy,
L. M. J. Am. Chem. Soc. 2007, 129, 4824–4833.
40
75
75
91
c
c
2-furyl-
(
9) Goossen, L. J.; Rudolphi, F.; Oppel, C.; Rodr ´ı guez, N. Angew. Chem., Int.
Ed. 2008, 47, 3043–3045.
c
2-NO2-C6H4-
(
10) Goossen, L. J.; Rodr ´ı guez, N.; Goossen, K. Angew. Chem., Int. Ed. 2008,
a
Reaction conditions: 1 mmol of potassium carboxylate, 2 mmol of
-tolyl triflate, 7.5 mol% Cu2O, 15 mol% 1,10-phenanthroline, 3 mol%
PdI2, 4.5 mol% Tol-BINAP, 4.0 mL of NMP, 170 °C, 24 h, isolated
47, 3100–3120.
(
(
11) Nagayama, K.; Shimizu, I.; Yamamoto, A. Chem. Lett. 1998, 1143–1144.
12) Myers, A. G.; Tanaka, D.; Mannion, M. R. J. Am. Chem. Soc. 2002, 124,
4
1
1250–11251.
b
c
yields. Microwave, 190 °C, 10 min (see Supporting Information).
5
(
13) Forgione, P.; Brochu, M. C.; St-Onge, M.; Thesen, K. H.; Bailey, M. D.;
mol% Cu2O, 10 mol% 1,10-phenanthroline, 2 mol% PdI2, 6 mol%
Bilodeau, F. J. Am. Chem. Soc. 2006, 128, 11350–11351.
P(p-Tol)3.
(14) (a) Doucet, H.; H o¨ fer, J.; Bruneau, C.; Dixneuf, P. H. J. Chem. Soc., Chem.
Commun. 1993, 850–851. (b) Bruneau, C.; Dixneuf, P. H. Angew. Chem.,
Int. Ed. 2006, 45, 2176–2203.
15) (a) Goossen, L. J.; Ghosh, K. Angew. Chem., Int. Ed. 2001, 40, 3458–3460.
(b) Goossen, L. J.; Ghosh, K. Chem. Commun. 2001, 2084–2085. (c)
Goossen, L. J.; Paetzold, J. Angew. Chem., Int. Ed. 2002, 41, 1237–1241.
protodecarboxylation of the carboxylates and, for particularly
nucleophilic benzoates (e.g., 1l), their transesterification with the
aryl triflates. For particularly reactive carboxylates (1m-o), the
catalyst loading and reaction time can significantly be reduced, even
(
(
d) Goossen, L. J.; D o¨ hring, A. AdV. Synth. Catal. 2003, 5, 943–947.
(16) Goossen, L. J.; Thiel, W. R.; Rodr ´ı guez, N.; Linder, C.; Melzer, B. AdV.
Synth. Catal. 2007, 349, 2241–2246.
3
when using the inexpensive but less active P(p-Tol) ligand.
(
17) Becht, J.-M.; Catala, C.; Cedric, L. D.; Le Drian, C.; Wagner, A. Org.
Lett. 2007, 9, 1781–1783.
Selected examples in Table 3 demonstrate that steric bulk and
common functionalities including ethers, amides, nitro, nitriles, and
heterocycles are tolerated also in the triflate coupling partner.
(
18) Ritter, K. Synthesis 1993, 735–762.
JA8050926
J. AM. CHEM. SOC. 9 VOL. 130, NO. 46, 2008 15249