1260
B. Ç. Ergün et al.
4
3-55 (1999).
Jeong, Y. G., Jae, H. M., and Keun, H. P., Isolation and
identification of 3-methoxy-4-hydroxybenzoic acid and 3-
methoxy-4-hydroxycinnamic acid from hot water extracts
of Hovenia dulcis Thumb and confirmation of their
antioxidant and antimicrobial activity. Korean J. Food
Sci. Technol., 32, 1403-1408 (2000).
Anselmi, C., Centini, M., Granata, P., Sega, A., Buonocore,
A., Bernini, A., and Facino, R. M., Antioxidant activity of
ferulic acid alkyl esters in a heterophasic system: a
mechanistic insight. J. Agric. Food Chem., 52, 6425-6432
(2004).
Bakalbassis, E. G., Chatzopoulou, A., Melissas, V. S.,
Tsimidou, M., Tsolaki, M., and Vafiadis, A., Ab initio and
density functional theory studies for the explanation of
the antioxidant activity of certain phenolic acids. Lipids,
Lo, H. H. and Chung, J. G., The effects of plant phenolics,
caffeic acid, chlorogenic acid and ferulic acid on arylamine
N-acetyltransferase activities in human gastrointestinal
microflora. Anticancer Res., 19, 133-139 (1999).
3
6, 181-190 (2001).
Masuda, T., Yamada, K., Maekawa, T., Takeda, Y., and
Yamaguchi, H., Antioxidant mechanism studies on ferulic
acid: identification of oxidative coupling products from
methyl ferulate and linoleate. J. Agric. Food Chem., 54,
6069-6074 (2006).
McCord, J. M. and Fridovich, I., Superoxide dismutase. An
enzymic function for erythrocuprein (hemocuprein). J.
Biol. Chem., 244, 6049-6055 (1969).
Blois, M. S., Antioxidant determination by the use of stable
free radical. Nature, 181, 1199-1200 (1958).
Bodet, C., Epifano, F., Genovese, S., Curini, M., and Grenier,
D., Effects of 3-(4'-geranyloxy-3'-methoxyphenyl)-2-trans
propenoic acid and its ester derivatives on biofilm for-
mation by two oral pathogens, Porphyromonas gingivalis
and Streptococcus mutans. Eur. J. Med. Chem., 43, 1612-
1
620 (2008).
Melchior, M. B., Fink-Gremmels, J., and Gaastra, W., Com-
parative assessment of the antimicrobial susceptibility of
Staphylococcus aureus isolates from bovine mastitis in
biofilm versus planktonic culture. J. Vet. Med. B Infect.
Dis. Vet. Public Health, 53, 326-332 (2006).
Caliskan-Ergün, B., Sükürog
˘
lu, M., Coban, T., Bano g˘ lu, E.,
and Suzen, S., Screening and evaluation of antioxidant
activity of some pyridazine derivatives. J. Enzyme Inhib.
Med. Chem., 23, 225-229 (2008).
Ceri, H., Olson, M. E., Stremick, C., Read, R. R., Morck, D.,
and Buret, A., The Calgary Biofilm Device: new technology
for rapid determination of antibiotic susceptibilities of
bacterial biofilms. J. Clin. Microbiol., 37, 1771-1776 (1999).
Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber,
D. R., and Lappin-Scott, H. M., Microbial biofilms. Annu.
Rev. Microbiol., 49, 711-745 (1995).
Costerton, J. W., Stewart, P. S., and Greenberg, E. P., Bac-
terial biofilms: a common cause of persistent infections.
Science, 284, 1318-1322 (1999).
Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H.,
Costerton, J. W., and Greenberg, E. P., The involvement
of cell-to-cell signals in the development of a bacterial
biofilm. Science, 280, 295-298 (1998).
Del Soldato, P., Benedini, F., and Antognazza, P., Nitro deri-
vatives as drugs for diseases having antiinflammatory
basis. WO200230866 (2002).
Michiyo, N., Shigeaki, I., Hisako, Y., Yoshihiko, O., Takuo,
T., Eisaku, N., Asao, H., and Hisaji, T., Antimicrobial acti-
vities of synthetic ferulic acid derivatives. Food Preservation
Science, 28, 183-188 (2002).
Mihara, M., Uchiyama, M., and Fukuzawa, K., Thiobarbituric
acid value on fresh homogenate of rat as a parameter of
lipid peroxidation in aging, CCl4 intoxication, and vitamin
E deficiency. Biochem. Med., 23, 302-311 (1980).
Mori, H., Kawabata, K., Yoshimi, N., Tanaka, T., Murakami,
T., Okada, T., and Murai, H., Chemopreventive effects of
ferulic acid on oral and rice germ on large bowel carcino-
genesis. Anticancer Res., 19, 3775-3778 (1999).
Murakami, A., Kadota, M., Takahashi, D., Taniguchi, H.,
Nomura, E., Hosoda, A., Tsuno, T., Maruta, Y., Ohigashi,
H., and Koshimizu, K., Suppressive effects of novel ferulic
acid derivatives on cellular responses induced by phorbol
ester, and by combined lipopolysaccharide and interferon-
Dunne, W. M. Jr., Bacterial adhesion: seen any good biofilms
lately? Clin. Microbiol. Rev., 15, 155-166 (2002).
γ. Cancer Lett., 157, 77-85 (2000).
Murakami, A., Nakamura, Y., Koshimizu, K., Takahashi, D.,
Matsumoto, K., Hagihara, K., Taniguchi, H., Nomura, E.,
Hosoda, A., Tsuno, T., Maruta, Y., Kim, H. W., Kawabata,
K., and Ohigashi, H., FA15, a hydrophobic derivative of
ferulic acid, suppresses inflammatory responses and skin
tumor promotion: comparison with ferulic acid. Cancer
Lett., 180, 121-129 (2002).
Nenadis, N., Zhang, H. Y., and Tsimidou, M. Z., Structure-
antioxidant activity relationship of ferulic acid deriva-
tives: effect of carbon side chain characteristic groups. J.
Agric. Food Chem., 51, 1874-1879 (2003).
Galey, J. B. and Terranova, E., Monoesters and diesters of
cinnamic acid or one of the derivatives tehreof and of
vitamin C, process for the preparation thereof, and use as
antioxidants in cosmetic, pharmaceutical or nutritional
compositions. L'Oreal, Paris, France, US 5,536,500 (1996).
Graf, E., Antioxidant potential of ferulic acid. Free Radic.
Biol. Med., 13, 435-448 (1992).
Halliwell, B., Free radicals and antioxidants: a personal
view. Nutr. Rev., 52, 253-265 (1994).
Jayaprakasam, B., Vanisree, M., Zhang, Y., Dewitt, D. L.,
and Nair, M. G., Impact of alkyl esters of caffeic and
ferulic acids on tumor cell proliferation, cyclooxygenase
enzyme, and lipid peroxidation. J. Agric. Food Chem., 54,
Nomura, E., Hosoda, A., Morishita, H., Murakami, A.,
Koshimizu, K., Ohigashi, H., and Taniguchi, H., Synthesis
of novel polyphenols consisted of ferulic and gallic acids,
and their inhibitory effects on phorbol ester-induced
5375-5381 (2006).