10.1002/anie.201914747
Angewandte Chemie International Edition
COMMUNICATION
Table 3. Copolymerization of n-decylallene and propylene by complex 2a and post-functional scheme. [a]
Entry
Propylene (atm)
T/℃
Time/h
Yield/g
Allene %[b]
1,2%[b]
Mn[c] ×10-4
PDI
Tg/Tm [d] (oC)
1
2
1
1
2
4
1
1
20
20
20
20
0
0.5
1
0.10
0.26
0.71
1.18
0.36
0.19
26.5
10.3
7.6
5.1
9.5
0
79
79
79
79
84
-
1.0
0.8
0.8
0.9
1.2
0.8
1.4
1.6
1.5
1.4
1.4
1.5
-40/-
-21/-
-17/-
-15/-
-19/3
-6/-
3
1
4
1
5
6[e]
3
20
1
[a] Conditions used for polymerization: [Sc] 10 μmol, Allene/[Sc]/[Ph3C][B(C6F5)4]=100:1:1 (mol/mol), Toluene, 2mL, Time, 1h, Temperature, r.t. The data in
table are for the copolymers before post-functionalization. [b] Measured by 1H NMR in CDCl3 at 25 oC. [c] Determined by GPC in THF at 40 oC against
polystyrene standard, [d] Determined by DSC, [e] Homopolymerization of propylene.
In summary, we have demonstrated that the unconventional
highly 1,2-selective polymerization of polar and nonpolar
alkylallene compounds can be achieved in high activity by using
the rare-earth metal based catalytic systems. These alkyl
substituted allene monomers are environmentally demanding,
thus, from catalytic precursor viewpoint, a more opening
coordination sphere is a precondition to show activity for allene
Wang, Y. Li, ACS Catal. 2018, 8, 5963; d) S. Li, D. Liu, Z.
Wang, D. Cui, ACS Catal. 2018, 8, 6086; e) L. Cui, M. Chen,
C. Chen, D. Liu, Z. Jian, Macromolecules 2019, 52, 7197.
[4] I. Moura, R. Nogueira, V. Bounor-Legare, A. V. Machado,
Mater. Chem.Phys. 2012, 134, 103.
[5] K. Iio, K. Kobayashi, M. Matsunaga, Polym. Advan. Technol.
2007, 18, 953.
polymerization.
The
half-sandwich
thiophene-fused
[6] a) M. B. Larsen, S. E. Herzog, H. C. Quitter, M. A. Hillmyer,
Acs. Macro. Letters. 2018, 7, 122; b) M. B. Larsen, S. J.
Wang, M. A. Hillmyer, J. Am. Chem. Soc. 2018, 140, 11911.
[7] D. Takeuchi, MRS Bull. 2013, 38, 252.
[8] a) J. Liu, Z. Han, X. Wang, Z. Wang, K. Ding, J. Am. Chem.
Soc. 2015, 137, 15346; b) T. M. Beck, B. Breit, Angew.
Chem. Int. Ed. 2017, 56, 1903; Angew. Chem. 2017, 129,
1929; c) Z. D. Miller, W. Li, T. R. Belderrain, J. Montgomery,
J. Am. Chem. Soc. 2013, 135, 15282.
cyclopentadienyl ligated rare-earth metal precursors are
sterically less bulky than the pyridinyl methylene fluorenyl and
the tridentate PNP ligated rare-earth metal precursors, which
exhibit higher activities. From allene monomer viewpoint, the
long alkyl chain or a terminal double bond cannot prohibit the
polymerization but the polar oxygen atom can terminate the
polymerization by chelating steadily to the active metal center.
With
respect
of
chemo-selectivity,
the
1,2-selective
polymerization is kinetically favored rather than the thermo
dynamical control. This work paves a new avenue to hydroxyl
modification of non polar polymers via copolymerization synthon
but to avoid the problem of catalysts being poisoned by the polar
groups. Now, the copolymerizations of allenes with styrene and
conjugated dienes and other simple olefins, are under
investigation.
[9] S. Kacker, A. Sen, J. Am. Chem. Soc. 1997, 119, 10028.
[10] M. Hong, B. Li, Y. Li, Chinese J. Polym. Sci. 2011, 29, 692.
[11] M. Taguchi, I. Tomita, T. Endo, Macromol. Chem. Physic.
2000, 201, 2322.
[12] a) A. Ding, G. Lu, H. Guo, X. Zheng, X. Huang, J. Polym.
Sci. Part A: Poly. Chem. 2013, 51, 1091; b) T. Takahashi, T.
Yokozawa, T. Endo, J. Polym. Sci. Part A: Poly. Chem.
1992, 30, 583.
Acknowledgements
This work is partially supported by the NSFC (projects Nos.
21634007, 21774118 and 21674108).
[13] a) K. Takagi, I. Tomita, T. Endo, Macromolecules 1997, 30,
7386; b) T. Kino, M. Taguchi, A. Tazawa, I. Tomita,
Macromolecules 2006, 39, 7474.
Keywords: allene • polar monomer • copolymerization •
hydroxylated polypropylene • rare-earth metal complex
References:
[1] Y. Chen, L. Wang, H. Yu, Y. Zhao, R. Sun, G. Jing, J. Huang,
H. Khalid, N. M. Abbasi, M. Akram, Prog. Polym. Sci. 2015,
45, 23.
[2] M. B. Zarandi, H. A. Bioki, Z. A. Mirbagheri, F. Tabbakh, G.
Mirjalili, Appl. Radiat. Isotopes. 2012, 70, 1.
[3] a) B. Liu, K. Qiao, J. Fang, T. Wang, Z. Wang, D. Liu, Z. Xie,
L. Maron, D. Cui, Angew. Chem. Int. Ed. 2018, 57, 14896;
Angew. Chem. 2018, 130, 15112; b) C. Zou, C. Chen, Polar-
[14] F. Lin, Z. Liu, T. Wang, D. Cui, Angew. Chem. Int. Ed. 2017,
56, 14653; Angew. Chem. 2017, 129, 14845.
[15] L. Wang, D. Cui, Z. Hou, W. Li, Y. Li, Organometallics 2011,
30, 757.
[16] C. Wu, B. Liu, F. Lin, M. Wang, D. Cui, Angew. Chem. Int.
Ed. 2017, 56, 6975; Angew. Chem. 2017, 129, 7079.
[17] C. Wang, G. Luo, M. Nishiura, G. Song, A. Yamamoto, Y.
Luo, Z. Hou, Science advances 2017, 3: e1701011.
[18] C. Yao, N. Liu, S. Long, C. Wu, D. Cui, Polym. Chem. 2016,
7, 1264.
Functionalized,
Crosslinkable,
Self-Healing
and
Photoresponsive Polyolefins, Angew. Chem. Int. Ed. DOI:
10.1002/anie.201910002; c) Y. Zhang, H. Mu, L. Pan, X.
This article is protected by copyright. All rights reserved.